Finite cohesion due to chain entanglement in polymer melts.

Soft Matter

Department of Polymer Science, University of Akron, Akron, Ohio 44325-3909, USA.

Published: April 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Three different types of experiments, quiescent stress relaxation, delayed rate-switching during stress relaxation, and elastic recovery after step strain, are carried out in this work to elucidate the existence of a finite cohesion barrier against free chain retraction in entangled polymers. Our experiments show that there is little hastened stress relaxation from step-wise shear up to γ = 0.7 and step-wise extension up to the stretching ratio λ = 1.5 at any time before or after the Rouse time. In contrast, a noticeable stress drop stemming from the built-in barrier-free chain retraction is predicted using the GLaMM model. In other words, the experiment reveals a threshold magnitude of step-wise deformation below which the stress relaxation follows identical dynamics whereas the GLaMM or Doi-Edwards model indicates a monotonic acceleration of the stress relaxation dynamics as a function of the magnitude of the step-wise deformation. Furthermore, a sudden application of startup extension during different stages of stress relaxation after a step-wise extension, i.e. the delayed rate-switching experiment, shows that the geometric condensation of entanglement strands in the cross-sectional area survives beyond the reptation time τd that is over 100 times the Rouse time τR. Our results point to the existence of a cohesion barrier that can prevent free chain retraction upon moderate deformation in well-entangled polymer melts.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6sm00142dDOI Listing

Publication Analysis

Top Keywords

stress relaxation
24
chain retraction
12
finite cohesion
8
polymer melts
8
delayed rate-switching
8
cohesion barrier
8
free chain
8
relaxation step-wise
8
step-wise extension
8
rouse time
8

Similar Publications

Oxidative stress has attracted attention as an indicator of exercise load. Minimizing the impact on the body is essential during underwater treadmill exercise. Here, we conducted an exploratory study of the effects of dermal suction, which has been reported to improve blood flow in healthy dogs, prior to underwater treadmill exercise.

View Article and Find Full Text PDF

Sounds constantly surround us, serving as sensory cues that help humans interpret the world and navigate the flood of stimuli they encounter. Research has shown that sounds and music can influence attentional performance; however, evidence on whether auditory stimuli can improve attention is limited. This study employed the attention network test to investigate how four types of sound-slow beat music, brown noise, fast beat music, and no sound-modulate visual attention.

View Article and Find Full Text PDF

Intestinal dysmotility is a major complication that significantly impacts the prognosis of acute pancreatitis (AP). The neuronal nitric oxide synthase (nNOS) -expressing neurons within the enteric nervous system promote intestinal relaxation via the release of nitric oxide (NO). As the rate-limiting enzyme of NO synthesis, nNOS directly regulates NO production, thereby modulating intestinal motility.

View Article and Find Full Text PDF

Background: The study aimed to adapt a stress and well-being intervention delivered via a mobile health (mHealth) app for Latinx Millennial caregivers. This demographic, born between 1981 and 1996, represents a significant portion of caregivers in the United States, with unique challenges due to higher mental distress and poorer physical health compared to non-caregivers. Latinx Millennial caregivers face additional barriers, including higher uninsured rates and increased caregiving burdens.

View Article and Find Full Text PDF

Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.

View Article and Find Full Text PDF