Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent literature has claimed that inhibition of the enzyme MTH1 can eradicate cancer. MTH1 is one of the "housekeeping" enzymes that are responsible for hydrolyzing damaged nucleotides in cells and thus prevent them from being incorporated into DNA. We have developed orthogonal and chemically distinct tool compounds to those published in the literature to allow us to test the hypothesis that inhibition of MTH1 has wide applicability in the treatment of cancer. Here we present the work that led to the discovery of three structurally different series of MTH1 inhibitors with excellent potency, selectivity, and proven target engagement in cells. None of these compounds elicited the reported cellular phenotype, and additional siRNA and CRISPR experiments further support these observations. Critically, the difference between the responses of our highly selective inhibitors and published tool compounds suggests that the effect reported for the latter may be due to off-target cytotoxic effects. As a result, we conclude that the role of MTH1 in carcinogenesis and utility of its inhibition is yet to be established.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.5b01760DOI Listing

Publication Analysis

Top Keywords

selective inhibitors
8
tool compounds
8
mth1
6
potent selective
4
inhibitors mth1
4
mth1 probe
4
probe role
4
role cancer
4
cancer cell
4
cell survival
4

Similar Publications

Serine protease inhibitors (SERPINs) are involved in various physiological processes and diseases, such as inflammation, cancer metastasis, and neurodegeneration. Their role in viral infections is poorly understood, as their expression patterns during infection and the range of proteases they target have yet to be fully characterized. Here, we show widespread expression of human SERPINs in response to respiratory virus infections, both in bronchioalveolar lavages from COVID-19 patients and in polarized human airway epithelial cultures.

View Article and Find Full Text PDF

ROSAH (retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and headache) syndrome is a rare genetic disease caused by variants in alpha-kinase 1 (ALPK1) resulting in downstream pro-inflammatory signaling mediated by the TIFA/TRAF6/NF-κB pathway. Here, we report the design of an ALPK1 inhibitor, DF-003, with pharmacokinetic properties suitable for daily oral dosing. In biochemical assays, DF-003 potently inhibits human ALPK1 (IC = 1.

View Article and Find Full Text PDF

Neural tumors represent diverse malignancies with distinct molecular profiles and present particular challenges due to the blood-brain barrier, heterogeneous molecular etiology including epigenetic dysregulation, and the affected organ's critical nature. KCC-07, a selective and blood-brain barrier penetrable MBD2 (methyl CpG binding domain protein 2) inhibitor, can suppress tumor development by inducing p53 signaling, proven only in medulloblastoma. Here we demonstrate KCC-07 treatment's application to other neural tumors.

View Article and Find Full Text PDF

Efficacy and safety of protamine sulfate following carotid artery stenting.

Cardiovasc Revasc Med

September 2025

Division of Vascular Surgery, Cardiovascular Center, Tufts Medical Center, Boston, MA, USA; Tufts University School of Medicine, Boston, MA, USA. Electronic address:

Background: protamine sulfate is used to reduce bleeding risk after Carotid Artery Stenting (CAS), but its efficacy in personalized patient settings remains underexplored. This study aims to identify factors associated with greater benefits from protamine sulfate following CAS.

Methods: A retrospective review of Vascular Quality Initiative (VQI) data (2016-2022) identified patients undergoing CAS, divided into Transfemoral CAS (TF-CAS) and Transcarotid artery revascularization (TCAR) groups.

View Article and Find Full Text PDF

The malignant manifestation of breast cancer is driven by complex molecular alterations that extend beyond genetic mutations to include epigenetic dysregulation. Among these, DNA methylation is a critical and reversible epigenetic modification that significantly influences breast cancer initiation, progression, and therapeutic resistance. This process, mediated by DNA methyltransferases (DNMTs), involves the addition of methyl groups to cytosine residues within CpG dinucleotides, resulting in transcriptional repression of genes.

View Article and Find Full Text PDF