Methyl chloride and methyl bromide emissions from baking: an unrecognized anthropogenic source.

Sci Total Environ

Bolin Centre for Climate Research, Stockholm University, Svante Arrhenius väg 8, 106 91 Stockholm, Sweden; Department of Analytical Chemistry and Environmental Science, Stockholm University, Stockholm University, Svante Arrhenius väg 8, 106 91 Stockholm, Sweden.

Published: May 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Methyl chloride and methyl bromide (CH3Cl and CH3Br) are the largest natural sources of chlorine and bromine, respectively, to the stratosphere, where they contribute to ozone depletion. We report the anthropogenic production of CH3Cl and CH3Br during breadbaking, and suggest this production is an abiotic process involving the methyl ester functional groups in pectin and lignin structural polymers of plant cells. Wide variations in baking styles allow only rough estimates of this flux of methyl halides on a global basis. A simple model suggests that CH3Br emissions from breadbaking likely peaked circa 1990 at approximately 200tonnes per year (about 0.3% of industrial production), prior to restrictions on the dough conditioner potassium bromate. In contrast, CH3Cl emissions from breadbaking may be of similar magnitude as acknowledged present-day CH3Cl industrial emissions. Because the mechanisms involve functional groups and compounds widely found in plant materials, this type of methyl halide production may occur in other cooking techniques as well.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2016.01.213DOI Listing

Publication Analysis

Top Keywords

methyl chloride
8
chloride methyl
8
methyl bromide
8
ch3cl ch3br
8
functional groups
8
emissions breadbaking
8
methyl
7
emissions
4
bromide emissions
4
emissions baking
4

Similar Publications

Thermodynamics and polarity-driven properties of fluorinated cyclopropanes.

Beilstein J Org Chem

August 2025

Department of Chemistry, Institute of Natural Sciences, Federal University of Lavras, 37200-900, Lavras, MG, Brazil.

Cyclopropane is a significant alicyclic motif, widely utilized in medicinal chemistry, while fluorination serves as a powerful tool to modulate properties that enhance the performance of pharmaceuticals and materials. This quantum-chemical study explores the energetic implications of fluorinating cyclopropane, providing insights into molecular characteristics arising from the polar C-F bond. Isodesmic reactions revealed that the conversion of cyclopropane and methyl fluoride into mono-, di-, tri-, tetra-, penta-, and hexafluorinated cyclopropanes is exothermic, except for the all--1,2,3-trifluorocyclopropane ().

View Article and Find Full Text PDF

A novel phthalonitrile derivative (a) containing three functional groups (hexyl, aminated ester, phenoxy) was synthesized and subsequently cyclotetramerized in the presence of the corresponding metal chloride salts to obtain hexadeca-substituted metal {M = Cu(II) and Co(II)} phthalocyanines (b and c). The water-soluble phthalocyanines (d and e) were prepared by treating the newly synthesized complexes (b and c) with methyl iodide. Moreover, gold nanoparticles (1) and silver nanoparticles (2) were prepared, and their surfaces were modified with quaternary phthalocyanines (d and e).

View Article and Find Full Text PDF

Electrocatalytic water oxidation with bioinspired cubane-type Co complexes.

Dalton Trans

September 2025

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Interior, CU, Ciudad de México, 04510, Mexico.

Synthesis, characterization, and electrocatalytic water oxidation studies of the cubane-type complexes [(μ-)CoCl(MeOH)] (1) and [(μ-)CoCl(MeOH)] (2) are herein reported. Cubanes 1 and 2 were obtained in high yields under mild conditions by self-assembly of the ligands = 1--2-benzimidazolylmethanol and = 1-methyl-2-benzimidazolylmethanol with CoCl·6HO in basic methanolic solution. Both compounds feature a cubane-type structure in which the central {CoO} units are built by four Co centers coordinated by alkoxide-bridged oxygen and nitrogen atoms from the deprotonated ligands and stabilized by MeOH molecules and chloride ions.

View Article and Find Full Text PDF

Innovative microwave-assisted extraction with biobased solvents to enhance the recovery of bioactive extractable and non-extractable polyphenols from lemon peels.

Food Chem

September 2025

Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain; Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río, Ctra. Madrid-Barcelona Km. 33.600, 28871

This study develops, for the first time, a sustainable method to extract extractable (EPPs) and non-extractable polyphenols (NEPs) from lemon peels using microwave-assisted extraction (MAE) with biobased solvents. A simplex-centroid design optimized EPPs extraction using γ-valerolactone (GVL), ethyl acetate (EtAc), and cyclopentyl methyl ether (CPME) (59.4:37:3.

View Article and Find Full Text PDF

This study aimed to profile the dynamics of indigenous bacterial communities in activated sludge, assess the pollutant load, and unlock the functional genes involved during the activated sludge treatment process. The physicochemical analyses of activated sludge revealed high amounts of phosphate, sulfate, chloride, and lignin, along with heavy metals like Fe, Zn, Cu, Ni, and Pb. Simultaneously, the GC-MS/MS technique identified decane, 1 bromo-2-methyl, pentadecanoic acid, methyl ester, benzene dicarboxylic acid, stigmasterol, borinic acid, diethyl, 2-hydroxymethyl cyclopropane, 2-methoxy-4-ethyl-phenol, 3,4,5-trichlorophenol, octadecanoic acid, and tetracosanic acid as major compounds.

View Article and Find Full Text PDF