Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Early diagnosis of low grade glioma has been a challenge to clinicians. Positron Emission Tomography (PET) using 18F-FDG as a radio-tracer has limited utility in this area because of the high background in normal brain tissue. Other radiotracers such as 18F-Fluorocholine (18F-FCH) could provide better contrast between tumor and normal brain tissue but with high incidence of false positives. In this study, the potential application of a dual tracer 18F-FCH/18F-FDG-PET is investigated in order to improve the sensitivity of PET imaging for low grade glioma diagnosis based on a mouse orthotopic xenograft model. BALB/c nude mice with and without orthotopic glioma xenografts from U87 MG-luc2 glioma cell line are used for the study. The animals are subjected to 18F-FCH and 18F-FDG PET imaging, and images acquired from two separate scans are superimposed for analysis. The 18F-FCH counts are subtracted from the merged images to identify the tumor. Micro-CT, bioluminescence imaging (BLI), histology and measurement of the tumor diameter are also conducted for comparison. Results show that there is a significant contrast in 18F-FCH uptake between tumor and normal brain tissue (2.65 ± 0.98), but with a high false positive rate of 28.6%. The difficulty of identifying the tumor by 18F-FDG only is also proved in this study. All the tumors can be detected based on the dual tracer technique of 18F-FCH/18F-FDG-PET imaging in this study, while the false-positive caused by 18F-FCH can be eliminated. Dual tracer 18F-FCH/18F-FDG PET imaging has the potential to improve the visualization of low grade glioma. 18F-FCH delineates tumor areas and the tumor can be identified by subtracting the 18F-FCH counts. The sensitivity was over 95%. Further studies are required to evaluate the possibility of applying this technique in clinical trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741524PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0148123PLOS

Publication Analysis

Top Keywords

dual tracer
16
pet imaging
16
low grade
12
grade glioma
12
normal brain
12
brain tissue
12
tracer 18f-fch/18f-fdg
8
18f-fch/18f-fdg pet
8
tumor
8
xenograft model
8

Similar Publications

Synthesis, preclinical evaluation and clinical application of a novel heterodimeric tracer Ga-pentixafor-c(RGDfK) for PET-CT imaging.

Eur J Nucl Med Mol Imaging

September 2025

Department of PET-CT/MRI, NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China.

Objective: CXCR4 and integrin αβ play important roles in tumor biology and are highly expressed in multiple types of tumors. This study aimed to synthesize, preclinically evaluate, and clinically validate a novel dual-targeted PET imaging probe Ga-pentixafor-c(RGDfK) for its potential in imaging tumors.

Methods: The effects of Ga-pentixafor-c(RGDfK) on cell viability, targeting specificity, and affinity were assessed in the U87MG cells.

View Article and Find Full Text PDF

Myocardial fibrosis, a key pathological feature of hypertensive heart disease (HHD), remains diagnostically challenging due to limited clinical tools. In this study, a FAPI-targeted uptake mechanism previously reported by our group, originally developed for tumor imaging, is extended to the detection of myocardial fibrosis in HHD using [F]F-NOTA-FAPI-MB. The diagnostic performance of this tracer is compared with those of [F]F-FDG, [F]F-FAPI-42, and [F]F-NOTA-FAP2286, and its potential for fluorescence imaging is also evaluated.

View Article and Find Full Text PDF

Purpose: ImmunoPET imaging of PD-L1 has emerged as a promising strategy for patient stratification and treatment response monitoring in immunotherapy. This study aimed to evaluate [Zr]Zr-DFO-Durvalumab in noninvasive imaging of PD-L1 expression in non-small cell lung cancer (NSCLC) and bladder cancer.

Materials And Methods: Durvalumab was conjugated with -SCN-Bn-DFO and labeled with [Zr]Zr-oxalate, achieving high radiochemical purity (> 99 %) and stability.

View Article and Find Full Text PDF

Novel Radiofluorinated Nanobody PET Tracer for Preclinical Studies of TIM3 Expression.

Mol Pharm

September 2025

Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Departmen

T-cell immunoglobulin and mucin domain-3 (TIM3) is an inhibitory checkpoint glycoprotein expressed on immune cells, particularly tumor-infiltrating lymphocytes (TILs), and plays a critical role in suppressing antitumor immune responses. While dual blockade of TIM3 and programmed cell death protein 1 (PD1) has shown promising results in enhancing immune responses in advanced cancers, the lack of reliable, noninvasive methods for detecting TIM3 expression in tumors remains a major challenge. To address this, we developed and characterized a novel positron emission tomography (PET) tracer, [F]AlF-RESCA-HVCR2N2, based on a TIM3-specific nanobody labeled via [F]AlF radiochemistry.

View Article and Find Full Text PDF

Purpose: To evaluate the detection rate of sentinel lymph node (SLN) mapping in early-stage ovarian cancer using [Tc]Tc-nanocolloid and indocyanine green (ICG), and the added value of an intraoperative gamma camera.

Methods: This was a prospective single-center trial of 63 patients with suspected early-stage epithelial ovarian cancer who underwent SLN mapping with combined tracers. [Tc]Tc-nanocolloid was injected into the ovarian ligaments before adnexectomy, and if malignancy was confirmed on intraoperative frozen section, ICG was administered after adnexectomy in immediate staging cases.

View Article and Find Full Text PDF