Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: The purpose of this study was to propose and evaluate a new wavelet-based technique for classification of arterial and venous vessels using time-resolved cerebral CT perfusion data sets.

Methods: Fourteen consecutive patients (mean age 73 yr, range 17-97) with suspected stroke but no pathology in follow-up MRI were included. A CT perfusion scan with 32 dynamic phases was performed during intravenous bolus contrast-agent application. After rigid-body motion correction, a Paul wavelet (order 1) was used to calculate voxelwise the wavelet power spectrum (WPS) of each attenuation-time course. The angiographic intensity A was defined as the maximum of the WPS, located at the coordinates T (time axis) and W (scale/width axis) within the WPS. Using these three parameters (A, T, W) separately as well as combined by (1) Fisher's linear discriminant analysis (FLDA), (2) logistic regression (LogR) analysis, or (3) support vector machine (SVM) analysis, their potential to classify 18 different arterial and venous vessel segments per subject was evaluated.

Results: The best vessel classification was obtained using all three parameters A and T and W [area under the curve (AUC): 0.953 with FLDA and 0.957 with LogR or SVM]. In direct comparison, the wavelet-derived parameters provided performance at least equal to conventional attenuation-time-course parameters. The maximum AUC obtained from the proposed wavelet parameters was slightly (although not statistically significantly) higher than the maximum AUC (0.945) obtained from the conventional parameters.

Conclusions: A new method to classify arterial and venous cerebral vessels with high statistical accuracy was introduced based on the time-domain wavelet transform of dynamic CT perfusion data in combination with linear or nonlinear multidimensional classification techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.4939224DOI Listing

Publication Analysis

Top Keywords

arterial venous
16
perfusion data
12
classification arterial
8
venous cerebral
8
three parameters
8
classify arterial
8
maximum auc
8
wavelet
5
parameters
5
classification
4

Similar Publications

Enhancing submandibular gland resection: A retrospective study on the efficacy of the ORBEYE 3D exoscope.

Oral Maxillofac Surg

September 2025

Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Shinmachi 2-5-1, Hirakata-city, Osaka, Japan.

Purpose: For submandibular gland resection, conventional surgery with the naked eye remains the standard. With its excellent automatic focus and high magnification, the ORBEYE 3D exoscope enables precise submandibular gland resection with less stress. Therefore, we aimed to examine the usefulness of the exoscope in submandibular gland resection.

View Article and Find Full Text PDF

AI-informed retinal biomarkers predict 10-year risk of onset of multiple hematological malignancies.

Eur J Cancer

August 2025

Emory University, Atlanta, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Atlanta Veterans Administration Medical Center, Atlanta, USA. Electronic address:

Background: Early detection of hematological malignancies improves long-term survival but remains a critical challenge due to heterogeneity in clinical presentation. Chronic inflammation is a key driver in hematologic cancers and is known to induce compensatory microvascular changes. High-resolution, non-invasive retinal imaging can allow the quantification of microvascular changes for the early detection of hematological malignancies.

View Article and Find Full Text PDF

Arterial thrombosis is a multifaceted process characterized by platelet aggregation and fibrin deposition, leading to the occlusion of blood vessels. It plays a central role in cardiovascular conditions such as myocardial infarction and ischemic stroke. Gaining insight into the mechanisms underlying arterial thrombosis is essential for developing effective treatments aimed at preventing thrombotic events and reducing associated health burdens.

View Article and Find Full Text PDF

Background: A comprehensive knowledge of renal vasculature is essential to diagnose and carry out safe clinical interventions accurately. Anatomic variations in renal vessels can present procedural challenges in surgeries such as nephrectomy, transplants, and endovascular interventions.

Methods: In the present retrospective study, we analyzed the distribution patterns of the renal vascular variants and measurements of length and diameter in computed tomography angiographies (CTAs).

View Article and Find Full Text PDF

Aims: The aim of the study was to evaluate the accuracy of two devices that measure hemoglobin (Hb) from blood samples taken from small capillary tubes (HemoCue® Hb 301 System) and another from whole blood taken from veins or arteries (Horiba H550) with a laboratory reference analyzer (Beckman Coulter DxH 520).

Subjects And Methods: A cross-sectional study was conducted, in which capillary and venous blood samples were taken from 529 individuals across outpatient and inpatient wards of both genders, with an age range from 7 to 83 years. The accuracy and agreement were statistically evaluated using Lin's concordance correlation coefficient.

View Article and Find Full Text PDF