A Bayesian approach for estimating allele-specific expression from RNA-Seq data with diploid genomes.

BMC Genomics

Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.

Published: January 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: RNA-sequencing (RNA-Seq) has become a popular tool for transcriptome profiling in mammals. However, accurate estimation of allele-specific expression (ASE) based on alignments of reads to the reference genome is challenging, because it contains only one allele on a mosaic haploid genome. Even with the information of diploid genome sequences, precise alignment of reads to the correct allele is difficult because of the high-similarity between the corresponding allele sequences.

Results: We propose a Bayesian approach to estimate ASE from RNA-Seq data with diploid genome sequences. In the statistical framework, the haploid choice is modeled as a hidden variable and estimated simultaneously with isoform expression levels by variational Bayesian inference. Through the simulation data analysis, we demonstrate the effectiveness of the proposed approach in terms of identifying ASE compared to the existing approach. We also show that our approach enables better quantification of isoform expression levels compared to the existing methods, TIGAR2, RSEM and Cufflinks. In the real data analysis of the human reference lymphoblastoid cell line GM12878, some autosomal genes were identified as ASE genes, and skewed paternal X-chromosome inactivation in GM12878 was identified.

Conclusions: The proposed method, called ASE-TIGAR, enables accurate estimation of gene expression from RNA-Seq data in an allele-specific manner. Our results show the effectiveness of utilizing personal genomic information for accurate estimation of ASE. An implementation of our method is available at http://nagasakilab.csml.org/ase-tigar .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4895278PMC
http://dx.doi.org/10.1186/s12864-015-2295-5DOI Listing

Publication Analysis

Top Keywords

rna-seq data
12
accurate estimation
12
bayesian approach
8
allele-specific expression
8
expression rna-seq
8
data diploid
8
diploid genome
8
genome sequences
8
isoform expression
8
expression levels
8

Similar Publications

 Keloid scarring and Metabolic Syndrome (MS) are distinct conditions marked by chronic inflammation and tissue dysregulation, suggesting shared pathogenic mechanisms. Identifying common regulatory genes could unveil novel therapeutic targets. Methods.

View Article and Find Full Text PDF

Purpose: Autoimmune thyroiditis (AIT) is the most common organ-specific autoimmune disease, and its pathogenesis is closely related to the inflammatory microenvironment driven by immune cell penetration. The role of the newly proposed concept of PANoptosis in immune-related diseases is gradually being revealed. However, there is currently a lack of reports on PANoptosis in AIT.

View Article and Find Full Text PDF

Background And Aim: Granulosa cells (GCs) are crucial mediators of follicular development and oocyte competence in goats, with their gene expression profiles serving as potential biomarkers of fertility. However, the lack of a standardized, quantifiable method to assess GC quality using transcriptomic data has limited the translation of such findings into reproductive applications. This study aimed to develop a hybrid deep learning model integrating one-dimensional convolutional neural networks (1DCNNs) and gated recurrent units (GRUs) to classify GCs as fertility-supporting (FS) or non-fertility-supporting (NFS) using single-cell RNA sequencing (scRNA-seq) data.

View Article and Find Full Text PDF

Analysis of physiological characteristics and gene co-expression networks in roots under low-temperature stress.

Front Plant Sci

August 2025

Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang, China.

is the most widely cultivated high-protein forage crop globally. However, its cultivation in high-latitude and cold regions of China is significantly hindered by low-temperature stress, particularly impacting the root system, the primary functional tissue crucial for winter survival. The physiological and molecular mechanisms underlying the root system's adaptation and tolerance to low temperatures remain poorly understood.

View Article and Find Full Text PDF

Background: Most RNA-seq datasets harbor genes with extreme expression levels in some samples. Such extreme outliers are usually treated as technical errors and are removed from the data before further statistical analysis. Here we focus on the patterns of such outlier gene expression to investigate whether they provide insights into the underlying biology.

View Article and Find Full Text PDF