Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

LiMnPO4 is an attractive cathode material for the next-generation high power Li-ion batteries, due to its high theoretical specific capacity (170 mA h g(-1)) and working voltage (4.1 V vs Li(+)/Li). However, two main drawbacks prevent the practical use of LiMnPO4: its low electronic conductivity and the limited lithium diffusion rate, which are responsible for the poor rate capability of the cathode. The electronic resistance is usually lowered by coating the particles with carbon, while the use of nanosize particles can alleviate the issues associated with poor ionic conductivity. It is therefore of primary importance to develop a synthetic route to LiMnPO4 nanocrystals (NCs) with controlled size and coated with a highly conductive carbon layer. We report here an effective surface etching process (using LiPF6) on colloidally synthesized LiMnPO4 NCs that makes the NCs dispersible in the aqueous glucose solution used as carbon source for the carbon coating step. Also, it is likely that the improved exposure of the NC surface to glucose facilitates the formation of a conductive carbon layer that is in intimate contact with the inorganic core, resulting in a high electronic conductivity of the electrode, as observed by us. The carbon coated etched LiMnPO4-based electrode exhibited a specific capacity of 118 mA h g(-1) at 1C, with a stable cycling performance and a capacity retention of 92% after 120 cycles at different C-rates. The delivered capacities were higher than those of electrodes based on not etched carbon coated NCs, which never exceeded 30 mA h g(-1). The rate capability here reported for the carbon coated etched LiMnPO4 nanocrystals represents an important result, taking into account that in the electrode formulation 80% wt is made of the active material and the adopted charge protocol is based on reasonable fast charge times.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4759613PMC
http://dx.doi.org/10.1021/acsami.5b11632DOI Listing

Publication Analysis

Top Keywords

carbon coated
12
specific capacity
8
electronic conductivity
8
rate capability
8
carbon
8
limnpo4 nanocrystals
8
conductive carbon
8
carbon layer
8
coated etched
8
limnpo4
6

Similar Publications

Accurate brain signal recording and precise electrode placement are critical for the success of neuromodulation therapies such as deep brain stimulation (DBS). Addressing these challenges requires deep brain electrodes that provide high-quality, stable recordings while remaining compatible with high-resolution medical imaging modalities like magnetic resonance imaging (MRI). Moreover, such electrodes shall be cost-effective, easy to manufacture, and patient-compatible.

View Article and Find Full Text PDF

Introduction: The presence of stem cells in the ovary has been a topic of discussion due to their questionable existence. Isolation of stem cells has been possible by enzymatic digestion; however, the percentage of cells harvested and expanded has not been satisfactory. This could be due to the lack of optimal adhesion provided by the standard commercial culture dishes, which affects the initial attachment and further growth of cells.

View Article and Find Full Text PDF

-Heterocyclic carbene (NHC)-protected gold nanoclusters (AuNCs) have emerged as promising candidates for biomedical applications due to their high stability and strong photoluminescence. However, their integration into atomistic molecular dynamics (MD) simulations, which facilitates an understanding of their behavior in biological environments, has been hindered by the lack of reliable force field parameters. Here, we present a new set of parameters for classical MD simulations of NHC-protected AuNCs, fully compatible with the AMBER force field.

View Article and Find Full Text PDF

Engineering aspects and materials for next generation neural implants.

Prog Mol Biol Transl Sci

September 2025

Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California, San Diego, La Jolla, CA, United States. Electronic address:

Nano-electronics based neural implants represent a rapidly advancing interdisciplinary domain at the intersection of bioelectronics, nanotechnology, and neuro-engineering. These implantable systems are engineered to restore, modulate, or augment neural functions by establishing high-fidelity, long-term interfaces with neural tissues. The design of such implants necessitates careful consideration of both materials and structural configurations to ensure biocompatibility, mechanical compliance, electrical functionality, and chronic stability.

View Article and Find Full Text PDF

Ball Milling Approaches for Biomass-Derived Nanocarbon in Advanced Sustainable Applications.

Chem Rec

September 2025

Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.

The synthesis of biomass-derived nanocarbons via ball milling has emerged as an innovative, sustainable, and cost-effective strategy in the field of nanotechnology. This review comprehensively explores the principles, mechanisms, and process parameters that influence the production of high-quality nanocarbons from biomass using ball milling. This process efficiently transforms biomass residues into nanoscale carbon, including graphene, carbon nanotubes, and nanofibers, with tunable physicochemical properties tailored for advanced applications.

View Article and Find Full Text PDF