Questioning Antiferromagnetic Ordering in the Expanded Metal, Li(NH3)4: A Lack of Evidence from μSR.

J Phys Chem Lett

Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.

Published: October 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present the results of a muon spin relaxation study of the solid phases of the expanded metal, Li(NH3)4. No discernible change in muon depolarization dynamics is witnessed in the lowest temperature phase (≤25 K) of Li(NH3)4, thus suggesting that the prevailing view of antiferromagnetic ordering is incorrect. This is consistent with the most recent neutron diffraction data. Discernible differences in muon behavior are reported for the highest temperature phase of Li(NH3)4 (82-89 K), attributed to the onset of structural dynamics prior to melting.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.5b01380DOI Listing

Publication Analysis

Top Keywords

antiferromagnetic ordering
8
expanded metal
8
metal linh34
8
temperature phase
8
questioning antiferromagnetic
4
ordering expanded
4
linh34
4
linh34 lack
4
lack evidence
4
evidence μsr
4

Similar Publications

Altermagnets are a newly identified family of collinear antiferromagnets with a momentum-dependent spin-split band structure of non-relativistic origin, derived from spin-group symmetry-protected crystal structures. Among candidate altermagnets, CrSb is attractive for potential applications because of a large spin-splitting near the Fermi level and a high Néel transition temperature of around 700 K. Molecular beam epitaxy is used to synthesize CrSb (0001) thin films with thicknesses ranging from 10 to 100 nm.

View Article and Find Full Text PDF

Materials exhibiting coexisting exploitable properties often result in especially attractive behavior from both fundamental and applied perspectives. In particular, magnetoelectric materials combining ferroelectric and magnetic properties are increasingly becoming paramount nowadays. Here, we show that FeH(PO) exhibits proton conductivity and the coexistence of magnetic and polar structural features, suggesting that such frameworks may be of broader interest beyond the field of proton conductors.

View Article and Find Full Text PDF

1D electronic structures on 2D crystalline surfaces are crucial for investigating low-dimensional quantum phenomena and enabling the development of dimensionally engineered nanodevices. However, the inherent periodic symmetry of 2D atomic lattices generally leads to delocalized electronic band extending across the surface, making the creation of periodic 1D electronic states a significant challenge. Here, robust 1D electronic ordering is demonstrated in ultrathin Mn films grown on an atomically flat, non-reconstructed body-centered cubic Fe substrate.

View Article and Find Full Text PDF

In this work, we investigate how the crystallographic growth direction influences spin current transmission in antiferromagnetic (AF) NiO thin films. By manipulating epitaxial growth, we explored the spin transport characteristics in LaSrMnO/NiO/Pt heterostructures grown on top of (001)- and (111)-oriented SrTiO substrates, varying the NiO barrier thickness (t). Spin currents were generated via spin pumping (SP), and detection was done by the inverse spin Hall effect (ISHE).

View Article and Find Full Text PDF

Continuous order-to-order quantum phase transitions from fixed-point annihilation.

Rep Prog Phys

September 2025

TU Dresden, Institut für Theoretische Physik, Dresden, 01062, GERMANY.

A central concept in the theory of phase transitions beyond the Landau-Ginzburg-Wilson paradigm is fractionalization: the formation of new quasiparticles that interact via emergent gauge fields. This concept has been extensively explored in the context of continuous quantum phase transitions between distinct orders that break different symmetries. We propose a mechanism for continuous order-to-order quantum phase transitions that operates independently of fractionalization.

View Article and Find Full Text PDF