Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

PCBP2, a member of the poly(C)-binding protein (PCBP) family, is involved in posttranscriptional and translational regulation by interacting with single-stranded poly(C) motifs in target mRNAs. Recent studies have shown that PCBP2 is overexpressed and plays an important role in human cancers, including glioma. However, the molecular basis for its up-regulation remains poorly understood. Here, we show that microRNA-214 (miR-214) interacts with the 3'-untranslated region of PCBP2 mRNA and induces its degradation, leading to reductions in its protein expression. As a result, overexpression of miR-214 mimics significantly inhibited, while its antisense oligos proliferation and growth of glioma cells. Restoration of PCBP2 remarkably reversed the tumor-suppressive effects of miR-214 on cell proliferation and growth. In summary, our data indicate that miR-214 may function as tumor suppressor in glioma by targeting PCBP2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4680391PMC

Publication Analysis

Top Keywords

proliferation growth
12
growth glioma
8
glioma cells
8
pcbp2
6
microrna-214 targets
4
targets pcbp2
4
pcbp2 suppress
4
suppress proliferation
4
glioma
4
cells pcbp2
4

Similar Publications

This study investigates a multifunctional hydrogel system integrating carboxymethyl cellulose (CMC) in a 3D-printed limonene (LIM) scaffold coated with poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS). The system allows to enhance wound healing, prevent infections, and monitor the healing progress. CMC is crosslinked with citric acid (CA) to form the hydrogel matrix (CMC-CA), while the 3D-printed limonene (LIM) scaffold is embedded within the hydrogel to provide mechanical support.

View Article and Find Full Text PDF

Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.

View Article and Find Full Text PDF

Background: Standard treatment for glioblastoma includes chemotherapy, alkylating agents such as temozolomide (TMZ); however, MGMT resistance leads to recurrence. Demethoxycurcumin (DMC) has been reported to inhibit cancer cell growth, induce apoptosis, and prevent metastasis in different cancer models. We investigated the DMC-induced apoptosis and autophagy via inhibition of the AKT/mTOR pathway in human glioma U87MG and T98G cell lines.

View Article and Find Full Text PDF

Transformative Therapies for Wound Care: Insights into Tissue Engineering and Regenerative Medicine.

Adv Exp Med Biol

September 2025

Department of Stem Cells & Regenerative Medicine, Center for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India.

Wound healing is a dynamic and complex process that consists of four interconnected phases: hemostasis, inflammation, proliferation, and remodeling. This complex process is based on the coordinated actions of growth factors, cytokines, and other cellular interactions. However, conditions such as diabetes and chronic illnesses can disrupt this process and lead to nonhealing wounds or chronic ulcers.

View Article and Find Full Text PDF

is a human fungal pathogen that survives and proliferates within phagocytic immune cells. To sustain growth in the nutrient-limited phagosome environment, the pathogenic yeast scavenges available carbon sources, which must be metabolized through central carbon metabolism for respiration and biomass synthesis. However, carbon metabolic pathways operating in the pathogenic yeast phase have not been extensively mapped.

View Article and Find Full Text PDF