Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In order to reveal the residual process of endosulfan in purple soil and protect soil ecological environment, the adsorption and desorption characteristics of endosulfan in purple soil were investigated, and effects of temperature, adsorbent amount, and initial pH of adsorption solution on the adsorption capacity were also examined by static adsorption and desorption experiments. The results showed that the adsorption kinetic process could be well described by the second-order kinetic equation with the initial rate constants of α-, β-endosulfan as 0. 157 and 0. 115 mg.(g.min)-1, respectively. The adsorption thermodynamic process could be well described by the Langmuir isotherm with the maximum adsorption capacities of α-, β-endosulfan as 0. 257 mg . g -1 and 0. 155 mg . g -1, respectively. The adsorption process of endosulfan in purple soil may be an exothermic physicochemical process, and is dominated by physical adsorption. Under the experimental conditions examined in this study, the initial pH of adsorption solution had a relative great influence on the adsorption capacity, whereas the temperature and adsorbent amount had no significant influence. The desorption experiments found that the maximum desorption capacities of α-, β-endosulfan adsorbed in purple soil were 0. 029 mg . g -1 and 0. 017 mg . g -1 at 6 and 4 h, and accounted for 10. 5% and 16. 1% in the maximum adsorption capacities, respectively.

Download full-text PDF

Source

Publication Analysis

Top Keywords

endosulfan purple
16
purple soil
16
adsorption
12
α- β-endosulfan
12
desorption characteristics
8
characteristics endosulfan
8
process endosulfan
8
adsorption desorption
8
temperature adsorbent
8
adsorbent amount
8

Similar Publications

In the present work, a structure-based design approach was used for the generation of a novel variant of synthetic glutathione transferase (PvGmGSTU) with higher sensitivity towards pesticides. Molecular modelling studies revealed Phe117 as a key residue that contributes to the formation of the hydrophobic binding site (H-site) and modulates the affinity of the enzyme towards xenobiotic compounds. Site-saturation mutagenesis of position Phe117 created a library of PvGmGSTU variants with altered kinetic and binding properties.

View Article and Find Full Text PDF

In order to reveal the residual process of endosulfan in purple soil and protect soil ecological environment, the adsorption and desorption characteristics of endosulfan in purple soil were investigated, and effects of temperature, adsorbent amount, and initial pH of adsorption solution on the adsorption capacity were also examined by static adsorption and desorption experiments. The results showed that the adsorption kinetic process could be well described by the second-order kinetic equation with the initial rate constants of α-, β-endosulfan as 0. 157 and 0.

View Article and Find Full Text PDF

In this study, an enzyme-linked immunosorbent assay (ELISA) was optimized and applied to the determination of endosulfan residues in 20 different kinds of food commodities including vegetables, dry fruits, tea and meat. The limit of detection (IC(15)) was 0.8 microg kg(-1) and the sensitivity (IC(50)) was 5.

View Article and Find Full Text PDF