98%
921
2 minutes
20
Over the years, analytical chemistry and immunology have contributed significantly to the field of clinical diagnosis by introducing quantitative techniques that can detect crucial and distinct chemical, biochemical and cellular biomarkers present in biosamples. Currently, quantitative two-dimensional hybrid immuno-analytical separation technologies are emerging as powerful tools for the sequential isolation, separation and detection of protein panels, including those with subtle structural changes such as variants, isoforms, peptide fragments, and post-translational modifications. One such technique to perform this challenging task is immunoaffinity capillary electrophoresis (IACE), which combines the use of antibodies and/or other affinity ligands as highly selective capture agents with the superior resolving power of capillary electrophoresis. Since affinity ligands can be polyreactive, i.e., binding and capturing more than one molecule, they may generate false positive results when tested under mono-dimensional procedures; one such application is enzyme-linked immunosorbent assay (ELISA). IACE, on the other hand, is a two-dimensional technique that captures (isolation and enrichment), releases, separates and detects (quantification, identification and characterization) a single or a panel of analytes from a sample, when coupled to one or more detectors simultaneously, without the presence of false positive or false negative data. This disruptive technique, capable of preconcentrate on-line results in enhanced sensitivity even in the analysis of complex matrices, may change the traditional system of testing biomarkers to obtain more accurate diagnosis of diseases, ideally before symptoms of a specific disease manifest. In this manuscript, we will present examples of the determination of biomarkers by IACE and the design of a miniaturized multi-dimensional IACE apparatus capable of improved sensitivity, specificity and throughput, with the potential of being used as a point-of-care instrument and holding promise for precision medicine and P4 medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2015.11.026 | DOI Listing |
Macromol Rapid Commun
September 2025
Key Laboratory of Textile Science & Technology, College of Textiles, Ministry of Education, Donghua University, Shanghai, China.
Persistent bacterial infections remain a major challenge in wound management. Although drug-loaded wound dressings have gained increasing attention, their therapeutic efficacy is often hindered by uncontrolled drug release and a lack of electrical signal responsiveness. Herein, an antibacterial dressing (CCS-PC) with electroactivity and stimulus-responsive drug release properties was fabricated via electro-assembly, wherein chitosan and ciprofloxacin hydrochloride (CIP) were co-deposited onto polypyrrole (PPy)-coated gauze.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China.
Unlabelled: Lactobacilli, recognized as beneficial bacteria within the human body, are celebrated for their multifaceted probiotic functions, including the regulation of intestinal flora, enhancement of body immunity, and promotion of nutrient absorption. This study comprehensively analyzed the genotypic and phenotypic characteristics of () strains isolated from the intestines of healthy chicks and assessed their potential as probiotics. The assembled genome consists of 29,521,986 bp, and a total of 1,771 coding sequences (CDSs) were predicted.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Department of Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.
complex (MABC) is notoriously difficult to treat. Current guidelines suggest a 14-day-long incubation and/or sequencing of to detect inducible macrolide resistance. We assessed whether the evolution of minimum inhibitory concentrations (MICs) can reliably predict inducible macrolide resistance and clinical outcomes of extrapulmonary MABC infections.
View Article and Find Full Text PDFAdv Mater
September 2025
State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
Regulating the differentiation of implanted stem cells into neurons is crucial for stem cell therapy of traumatic brain injury (TBI). However, due to the migratory nature of implanted stem cells, precise and targeted regulation of their fate remains challenging. Here, neural stem cells (NSCs) are bio-orthogonally engineered with hyaluronic acid methacryloyl (HAMA) microsatellites capable of sustained release of differentiation modulators for targeted regulation of their neuronal differentiation and advanced TBI repair.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
Integrating surface-enhanced fluorescence (SEF) and surface-enhanced Raman spectroscopy (SERS) into a single probe is a natural step forward for plasmon-enhanced spectroscopy (PES), as SEF enables enhanced fluorescent imaging for fast screening of targets, while SERS allows ultrasensitive trace molecular characterization with specificity. However, many challenges remain, e.g.
View Article and Find Full Text PDF