98%
921
2 minutes
20
Correct positioning and differentiation of neurons during brain development is a key precondition for proper function. Focal cortical dysplasias (FCDs) are increasingly recognized as causes of therapy refractory epilepsies. Neuropathological analyses of respective surgical specimens from neurosurgery for seizure control often reveal aberrant cortical architecture and/or aberrantly shaped neurons in FCDs. However, the molecular pathogenesis particularly of FCDs with aberrant lamination (so-called FCD type I) is largely unresolved. Lipoproteins and particularly low-density lipoprotein receptor-related protein 12 (LRP12) are involved in brain development. Here, we have examined a potential role of LRP12 in the pathogenesis of FCDs. In vitro knockdown of LRP12 in primary neurons results in impaired neuronal arborization. In vivo ablation of LRP12 by intraventricularly in utero electroporated shRNAs elicits cortical maldevelopment, i.e. aberrant lamination by malpositioning of upper cortical layer neurons. Subsequent epilepsy phenotyping revealed pentylenetetrazol (PTZ)-induced seizures to be aggravated in cortical LRP12-silenced mice. Our data demonstrates IUE mediated cortical gene silencing as an excellent approach to study the role of distinct molecules for epilepsy associated focal brain lesions and suggests LRP12 and lipoprotein homeostasis as potential molecular target structures for the emergence of epilepsy-associated FCDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbd.2015.11.021 | DOI Listing |
Neurol Sci
September 2025
Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
The rapid evolution of digital tools in recent years after COVID-19 pandemic has transformed diagnostic and therapeutic practice in neurology. This shift has highlighted the urgent need to integrate digital competencies into the training of future specialists. Key innovations such as telemedicine, artificial intelligence, and wearable health technologies have become central to improving healthcare delivery and accessibility.
View Article and Find Full Text PDFJ Neural Transm (Vienna)
September 2025
Sárospatak College, Sztárai Institute, University of Tokaj, Eötvöst str. 7, Sárospatak, 3944, Hungary.
Generalized Anxiety Disorder (GAD) is characterized by excessive worry and physical symptoms of prolonged anxiety. Patients with subclinical GAD-states (sub-GAD) do not fulfill the diagnostic criteria of GAD, but they often show a disease burden similar to GAD, and the subclinical state may turn into a full syndrome. Neuroinflammation may contribute to changes in brain structures in sub-GAD, but direct evidence remains lacking.
View Article and Find Full Text PDFNat Aging
September 2025
Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA.
Clinical Alzheimer's disease is currently characterized by cerebral β-amyloidosis associated with cognitive impairment. However, most cases of Alzheimer's disease are associated with multiple neuropathologies at autopsy. The peripheral protein changes associated with these disease endophenotypes are poorly understood.
View Article and Find Full Text PDFNature
September 2025
Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA.
Neural activity is increasingly recognized as a crucial regulator of cancer growth. In the brain, neuronal activity robustly influences glioma growth through paracrine mechanisms and by electrochemical integration of malignant cells into neural circuitry via neuron-to-glioma synapses. Outside of the central nervous system, innervation of tumours such as prostate, head and neck, breast, pancreatic, and gastrointestinal cancers by peripheral nerves similarly regulates cancer progression.
View Article and Find Full Text PDFGenes Dev
September 2025
Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York 10027, USA;
For neurons to establish the correct connections in animal nervous systems, interactions between cell adhesion molecules (CAMs), expressed presynaptically and postsynaptically, are thought to guide neurons to their targets. Here, we assess the role that affinity between two cognate CAMs-DIP-α and Dpr10-plays in establishing the leg neuromuscular system in If affinity decreases or, surprisingly, increases past certain thresholds, motor neuron (MN) terminal branches fail to be maintained. Live imaging during development shows that when affinities are aberrant, MN filopodia are unable to productively engage their muscle targets.
View Article and Find Full Text PDF