Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Restored rod visual function after gene therapy can be established unequivocally by demonstrating that, after dark adaptation, spectral sensitivity has the shape characteristic of rods and that this shape collapses to a cone-like shape before rods have recovered after an intense bleach. We used these tests to assess retinal function in eight young adults and children with early-onset severe retinal dystrophy from Phase II of a clinical gene-therapy trial for RPE65 deficiency that involved the subretinal delivery of a recombinant adeno-associated viral vector carrying RPE65. We found substantial improvements in rod sensitivity in two participants: dark-adapted spectral sensitivity was rod-like after treatment and was cone-like before rods had recovered after a bleach. After 40 min of dark adaptation, one participant showed up to 1,000-fold sensitivity improvements 4 months after treatment and the second up to 100-fold improvements 6 months after treatment. The dark-adapted spectral sensitivities of the other six participants remained cone-like and showed little improvement in sensitivity.

Download full-text PDF

Source
http://dx.doi.org/10.1167/15.15.20DOI Listing

Publication Analysis

Top Keywords

spectral sensitivity
12
function gene
8
gene therapy
8
dark adaptation
8
rods recovered
8
dark-adapted spectral
8
improvements months
8
months treatment
8
sensitivity
5
spectral
4

Similar Publications

Congenital hearing loss is a significant health problem, with a worldwide incidence of >6 per 1000 live births. Late diagnosis will delay appropriate treatment, leading to potential neurodevelopment problems. Early diagnosis requires neonatal hearing screening, where one of the most used techniques is automated Auditory Brainstem Responses (aABR).

View Article and Find Full Text PDF

Single-cell surface-enhanced Raman scattering (SERS) has emerged as a powerful tool for precision medicine owing to its label-free detection, ultrasensitivity, and unique molecular fingerprinting. Unlike conventional bulk analysis, it enables detailed characterization of cellular heterogeneity, with particular promise in circulating tumor cell (CTC) identification, tumor microenvironment (TME) metabolic profiling, subcellular imaging, and drug sensitivity assessment. Coupled with microfluidic droplet systems, SERS supports high-throughput single-cell analysis and multiparametric screening, while integration with complementary modalities such as fluorescence microscopy and mass spectrometry enhances temporal and spatial resolution for monitoring live cells.

View Article and Find Full Text PDF

Purpose: To evaluate inter-grader variability in posterior vitreous detachment (PVD) classification in patients with epiretinal membrane (ERM) and macular hole (MH) on spectral-domain optical coherence tomography (SD-OCT) and identify challenges in defining a reliable ground truth for artificial intelligence (AI)-based tools.

Methods: A total of 437 horizontal SD-OCT B-scans were retrospectively selected and independently annotated by six experienced ophthalmologists adopting four categories: 'full PVD', 'partial PVD', 'no PVD', and 'ungradable'. Inter-grader agreement was assessed using pairwise Cohen's kappa scores.

View Article and Find Full Text PDF

AlN is a core material widely used as a substrate and heat sink in various electronic and optoelectronic devices. Introducing luminescent properties into intrinsic AIN opens new opportunities for next-generation intelligent sensors, self-powered displays, and wearable electronics. In this study, the first evidence is presented of AlN crystals exhibiting satisfactory mechanoluminescence (ML), photoluminescence (PL), and afterglow performance, demonstrating their potential as novel multifunctional optical sensors.

View Article and Find Full Text PDF

We reveal contrasting behaviors in molecular motion between the two materials, including the identification of resonance-enhanced dynamic features in elastomers. We present a depth-resolved analysis of molecular dynamics in semicrystalline polytetrafluoroethylene (PTFE) and fully amorphous fluorinated elastomer (SIFEL) films using static-gradient solid-state F NMR imaging. By measuring spin-lattice relaxation rates ( ) at multiple frequencies and evaluating the corresponding spectral density functions, we reveal distinct dynamic behaviors between the two materials.

View Article and Find Full Text PDF