98%
921
2 minutes
20
So far, the characteristics of a good quality egg have been elusive, similar to the nature of the physiological, cellular, and molecular cues leading to its production both in vivo and in vitro. Current understanding highlights a strong and complex interdependence between the follicular cells and the gamete. Secreted factors induce cellular responses in the follicular cells, and direct exchange of small molecules from the cumulus cells to the oocyte through gap junctions controls meiotic arrest. Studying the interconnection between the cumulus cells and the oocyte, we previously demonstrated that the somatic cells also contribute transcripts to the gamete. Here, we show that these transcripts can be visualized moving down the transzonal projections (TZPs) to the oocyte, and that a time course analysis revealed progressive RNA accumulation in the TZPs, indicating that RNA transfer occurs before the initiation of meiosis resumption under a timetable fitting with the acquisition of developmental competence. A comparison of the identity of the nascent transcripts trafficking in the TZPs, with those in the oocyte increasing in abundance during maturation, and that are present on the oocyte's polyribosomes, revealed transcripts common to all three fractions, suggesting the use of transferred transcripts for translation. Furthermore, the removal of potential RNA trafficking by stripping the cumulus cells caused a significant reduction in maturation rates, indicating the need for the cumulus cell RNA transfer to the oocyte. These results offer a new perspective to the determinants of oocyte quality and female fertility, as well as provide insight that may eventually be used to improve in vitro maturation conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809558 | PMC |
http://dx.doi.org/10.1095/biolreprod.114.127571 | DOI Listing |
Anim Sci J
September 2025
Department of Animal Science, Bangladesh Agricultural University, Mymensingh, Bangladesh.
This study investigates the effects of L-carnitine on nuclear maturation and fertilization in cattle and goat oocytes. Ovaries were collected from females with poor reproductive efficiency in the tropical climate, and cumulus-oocyte complexes (COCs) were retrieved from large antral follicles. COCs were cultured with varying concentrations of L-carnitine (0, 0.
View Article and Find Full Text PDFJ Anim Sci
September 2025
Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic.
Metabolic stress and negative energy balance (NEB) are typical undesirable accompanying phenomenon of the post-partum period in dairy cattle. They negatively affect not only milk production but also the reproductive abilities of the cow, and it is therefore desirable to recognize NEB early to prevent its development. Metabolic stress markers are traditionally total cholesterol (tChol), non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHB) and triacylglycerols (TAGs).
View Article and Find Full Text PDFBiol Reprod
September 2025
Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Qc, Canada.
Deep 3D imaging of oocytes shows several difficulties. Their large size, spherical shape causes depth-dependent artefactual shadow in the middle, resulting from refractive index mismatches induced by turbid organelles and lipid droplets. These mismatches lead to optical aberrations, increasing the laser spot size at the confocal pinhole plan and causing significant attenuation of fluorescence intensity making difficult to clearly image fine structures such as the transzonal projections (TZPs) connecting cumulus cells and the oocyte.
View Article and Find Full Text PDFEndokrynol Pol
September 2025
Department of Gynecology, Geriatric Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, China.
Introduction: The present study was undertaken to elucidate the expression status and molecular mechanism underlying microRNA-3127-5p (miR-3127-5p) in polycystic ovary syndrome (PCOS).
Material And Methods: A total of 50 PCOS and 50 non-PCOS patients were recruited as research subjects. Quantitative real-time polymerase chain reaction was employed to assess the relative abundances of miR-3127-5p in serum, cumulus cells (CCs), and granulosa cells (GCs) from PCOS patients.
Biomedicines
August 2025
Department of Public Health, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy.
Polycystic ovary syndrome (PCOS) is a complex and multifactorial disorder affecting reproductive, endocrine, and metabolic functions in women of reproductive age. While environmental and lifestyle factors play a role, increasing evidence highlights the contribution of genetic and epigenetic mechanisms to its pathogenesis. This narrative review aims to provide an updated overview of the current evidence regarding the role of genetic variants, gene expression patterns, and epigenetic modifications in the etiopathogenesis of PCOS, with a focus on their impact on ovarian function, fertility, and systemic alterations.
View Article and Find Full Text PDF