Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A constructed wetland system composed of a subsurface flow wetland, a surface flow wetland and a facultative pond was studied from July 2008 until May 2012. It was created to treat the domestic sewage produced by a hamlet of 150 inhabitants. Monthly physicochemical and microbiological analyses were carried out in order to evaluate the removal efficiency of each stage of the process and of the total treatment system. Pair-wise Student's t-tests showed that the mean removal of each considered parameter was significantly different (α = 0.05) between the various treatment phases. Two-way ANOVA and Tukey's HSD tests were used to find significant differences between wetland types and seasons in the removal efficiency of the considered water quality parameters. Significant differences in percent removal efficiency between the treatment phases were observed for total phosphorus, total nitrogen, ammonia nitrogen and organic load (expressed as Chemical Oxygen Demand). In general, the wastewater treatment was carried by the sub-superficial flow phase mainly, both in growing season and in quiescence season. Escherichia coli removal ranged from 98% in quiescence season to >99% in growing season (approximately 2-3 orders of magnitude). The inactivation of fecal bacteria was not influenced by the season, but only by the treatment phase.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15226514.2015.1109601DOI Listing

Publication Analysis

Top Keywords

removal efficiency
12
surface flow
8
constructed wetland
8
flow wetland
8
treatment phases
8
growing season
8
quiescence season
8
removal
6
wetland
5
treatment
5

Similar Publications

Bisphenol A (BPA) is a persistent organic pollutant with toxic effects on human health and ecosystems. In this study, the performance of MWCNT-OH functionalized with iron nanoparticles (MWCNT-OH@Fe) using sugarcane bagasse extract as a reducing agent (green synthesis) was evaluated for BPA adsorption. The kinetics are fast, between 10 and 20 min in the range of concentrations evaluated and the resistance to external film diffusion (external film mass transfer) identified as the rate-limiting step of the process.

View Article and Find Full Text PDF

The unregulated use and improper disposal of active pharmaceutical ingredients (APIs), particularly phenylbutazone (PBZ), are contaminating water resources and posing serious risks to the food chain. PBZ is a nonsteroidal anti-inflammatory drug (NSAID) commonly used for treating pain and fever in animals, and its persistence in the environment due to inadequate waste management has become a cause of concern. To address this, we report the fabrication of benzimidazole-based self-assembled nanomicelles (R2 NMs) for selective detection and removal of PBZ.

View Article and Find Full Text PDF

Carbon fiber nanotip electrodes (CFNEs) are crucial for electrochemical recordings of neurotransmission release in confined spaces, such as synapses and intracellular measurements. However, fabricating CFNEs with small surface area to minimize noise remains challenging due to inconsistent tip size control, low reproducibility, and low fabrication success rate. Here, we present a reliable, user-friendly method with high reproducibility and success rate for precise CFNE fabrication using microscopy-guided electrochemical etching of cylindrical carbon fiber microelectrodes in a potassium hydroxide droplet.

View Article and Find Full Text PDF

Effective removal of trace heavy metal ions from aqueous bodies is a pressing problem and requires significant improvement in the area of absorbent material in terms of removal efficiency and sustainability. We propose an efficient strategy to enhance the adsorption efficiency of carbon nanotubes (CNTs) by growing dendrimers on their surface. First, CNTs were pre-functionalized with maleic acid (MA) via Diels-Alder reaction in presence of a deep eutectic solvent under ultrasonication.

View Article and Find Full Text PDF

The role of biochar in combating microplastic pollution: a bibliometric analysis in environmental contexts.

Beilstein J Nanotechnol

August 2025

Faculty of Engineering and Technology, Saigon University, 273 An Duong Vuong Street, Cho Quan Ward, Ho Chi Minh City 700000, Vietnam.

This study employs a bibliometric analysis using CiteSpace to explore research trends on the impact of biochar on microplastics (MPs) in soil and water environments. In agricultural soils, MPs reduce crop yield, alter soil properties, and disrupt microbial diversity and nutrient cycling. Biochar, a stable and eco-friendly material, has demonstrated effectiveness in mitigating these effects by restoring soil chemistry, enhancing microbial diversity and improving crop productivity.

View Article and Find Full Text PDF