98%
921
2 minutes
20
Changes in weather and land use are transforming the spatial and temporal characteristics of fire regimes in Amazonia, with important effects on the functioning of dense (i.e., closed-canopy), open-canopy, and transitional forests across the Basin. To quantify, document, and describe the characteristics and recent changes in forest fire regimes, we sampled 6 million ha of these three representative forests of the eastern and southern edges of the Amazon using 24 years (1983-2007) of satellite-derived annual forest fire scar maps and 16 years of monthly hot pixel information (1992-2007). Our results reveal that changes in forest fire regime properties differentially affected these three forest types in terms of area burned and fire scar size, frequency, and seasonality. During the study period, forest fires burned 15% (0.3 million ha), 44% (1 million ha), and 46% (0.6 million ha) of dense, open, and transitional forests, respectively. Total forest area burned and fire scar size tended to increase over time (even in years of average rainfall in open canopy and transitional forests). In dense forests, most of the temporal variability in fire regime properties was linked to El Nino Southern Oscillation (ENSO)-related droughts. Compared with dense forests, transitional and open forests experienced fires twice as frequently, with at least 20% of these forests' areas burning two or more times during the 24-year study period. Open and transitional forests also experienced higher deforestation rates than dense forests. During drier years, the end of the dry season was delayed by about a month, which resulted in larger burn scars and increases in overall area burned later in the season. These observations suggest that climate-mediated forest flammability is enhanced by landscape fragmentation caused by deforestation, as observed for open and transitional forests in the Eastern portion of the Amazon Basin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1890/14-1528.1 | DOI Listing |
Plant Cell Environ
September 2025
Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou, China.
Sugar metabolism is commonly implicated as crucial in the transition between growth and cessation during winter; however, its exact role remains elusive. The evergreen iris (Iris japonica) ceases growth in winter without entering endodormancy, yet it continues to sustain sugar metabolism and transport throughout the season. Here, we elucidate the mechanisms underlying the sugar-mediated growth transition-the shift between growth and cessation-in I.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, China.
This study integrates machine learning (ML) and density functional theory (DFT) to systematically investigate the oxygen electrocatalytic activity of two-dimensional (2D) TM(HXBHYB) (HX/YB = HIB (hexaaminobenzene), HHB (hexahydroxybenzene), HTB (hexathiolbenzene), and HSB (hexaselenolbenzene)) metal-organic frameworks (MOFs). By coupling transition metals (TM) with the above ligands, stable 2D TM(HXBHYB)@MOF systems were constructed. The Random Forest Regression (RFR) model outperformed the others, revealing the intrinsic relationship between the physicochemical properties of 2D TM(HXBHYB)@MOF and their ORR/OER overpotentials.
View Article and Find Full Text PDFJAACAP Open
September 2025
University of Vermont, Burlington, Vermont.
Objective: The transition to college is a period of growth and vulnerability for young adult health and well-being and provides a critical window for potential behavioral interventions. In this study, we sought to examine the trajectory of anxiety symptoms and their association with individual characteristics, exposure to stressors, and sleep behaviors during the transition to college.
Method: We recruited full-time, incoming undergraduate students at a university in the northeastern United States to participate during the first semester of college between October 21, 2022, and December 12, 2022.
Proc Natl Acad Sci U S A
September 2025
Chinese Academy of Sciences Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
Vegetation phenology, i.e., seasonal biological events such as leaf-out and leaf-fall, regulates local climate through biophysical processes like evapotranspiration (ET) and albedo.
View Article and Find Full Text PDFInt J Med Inform
September 2025
Department of Signal Theory and Communications and Telematics Engineering University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain. Electronic address:
Introduction: Insider threats pose a critical risk in healthcare environments, where Hospital Information Systems (HIS) manage sensitive patients data. Authorized users may intentionally or accidentally compromise data confidentiality, integrity, and availability. This study assessed information security practices from the perspective of healthcare professionals in Spanish medical centers.
View Article and Find Full Text PDF