Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Heterozygous germline mutations in any of the mismatch repair (MMR) genes, MLH1, MSH2, MSH6, and PMS2, cause Lynch syndrome (LS), an autosomal dominant cancer predisposition syndrome conferring a high risk of colorectal, endometrial, and other cancers in adulthood. Offspring of couples where both spouses have LS have a 1:4 risk of inheriting biallelic MMR gene mutations. These cause constitutional MMR deficiency (CMMRD) syndrome, a severe recessively inherited cancer syndrome with a broad tumor spectrum including mainly hematological malignancies, brain tumors, and colon cancer in childhood and adolescence. Many CMMRD children also present with café au lait spots and axillary freckling mimicking neurofibromatosis type 1.

Procedure: We describe our experience in seven CMMRD families demonstrating the role and importance of founder mutations and consanguinity on its prevalence. Clinical presentations included brain tumors, colon cancer, lymphoma, and small bowel cancer.

Results: In children from two nonconsanguineous Ashkenazi Jewish (AJ) families, the common Ashkenazi founder mutations were detected; these were homozygous in one family and compound heterozygous in the other. In four consanguineous families of various ancestries, different homozygous mutations were identified. In a nonconsanguineous Caucasus/AJ family, lack of PMS2 was demonstrated in tumor and normal tissues; however, mutations were not identified.

Conclusions: CMMRD is rare, but, especially in areas where founder mutations for LS and consanguinity are common, pediatricians should be aware of it since they are the first to encounter these children. Early diagnosis will enable tailored cancer surveillance in the entire family and a discussion regarding prenatal genetic diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pbc.25818DOI Listing

Publication Analysis

Top Keywords

founder mutations
16
mismatch repair
8
mutations
8
mmr genes
8
brain tumors
8
tumors colon
8
colon cancer
8
mutations consanguinity
8
cancer
5
constitutional mismatch
4

Similar Publications

Imaging mass cytometry dataset of small-cell lung cancer tumors and tumor microenvironments.

BMC Res Notes

September 2025

Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.

Objectives: Small cell lung cancer (SCLC) accounts for approximately 15% of lung tumors and is marked by aggressive growth and early metastatic spread. In this study, we used two SCLC mouse models with differing tumor mutation burdens (TMB). To investigate tumor composition, spatial architecture, and interactions with the surrounding microenvironment, we acquired multiplexed images of mouse lung tumors using imaging mass cytometry (IMC).

View Article and Find Full Text PDF

Introduction: TNM staging systems create prognostic categories by anatomic extent of disease. Whether therapeutically important molecular alterations in NSCLC augment the prognostic information of TNM staging is unclear. To study this, we analyzed molecular data from the ninth edition of the lung cancer staging system.

View Article and Find Full Text PDF

Personalized treatment selection is crucial for cancer patients due to the high variability in drug response. While actionable mutations can increasingly inform treatment decisions, most therapies still rely on population-based approaches. Here, we introduce neural interaction explainable AI (NeurixAI), an explainable and highly scalable deep learning framework that models drug-gene interactions and identifies transcriptomic patterns linked with drug response.

View Article and Find Full Text PDF

An iPSC-derived neuronal model reveals manganese's role in neuronal endocytosis, calcium flux and mitochondrial bioenergetics.

iScience

September 2025

Department of Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, UK.

Manganese (Mn) is an essential trace metal required for normal biological function, yet it also poses neurotoxic risks when dysregulated. Maintaining proper intracellular and extracellular Mn levels is critical, as Mn imbalance has been implicated in a spectrum of human diseases-including inherited Mn transport disorders, acquired manganism, and more prevalent neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Despite these associations, the cellular mechanisms driving Mn-induced neuropathology remain poorly understood.

View Article and Find Full Text PDF

Plasminogen activator inhibitor-1 (PAI-1) deficiency is a rare disorder that causes moderate to severe bleeding and cardiac fibrosis, caused by mutation in the gene and no detectable circulating PAI-1 protein. There are currently no therapies that can effectively replace PAI-1 because the protein has a short half-life. An alternative approach to using recombinant protein is to endogenously increase circulating PAI-1 levels using mRNA therapy.

View Article and Find Full Text PDF