Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Circulating tumor cells (CTCs) in the blood of cancer patients are recognized as important potential targets for future anticancer therapies. As mediators of metastatic spread, CTCs are also promising to be used as 'liquid biopsy' to aid clinical decision-making. Recent work has revealed potentially important genotypic and phenotypic heterogeneity within CTC populations, even within the same patient. MicroRNAs (miRNAs) are key regulators of gene expression and have emerged as potentially important diagnostic markers and targets for anti-cancer therapy. Here, we describe a robust in situ hybridization (ISH) protocol, incorporating the CellSearch(®) CTC detection system, enabling clinical investigation of important miRNAs, such as miR-10b on a cell by cell basis. We also use this method to demonstrate heterogeneity of such as miR-10b on a cell-by-cell basis. We also use this method to demonstrate heterogeneity of miR-10b in individual CTCs from breast, prostate and colorectal cancer patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4629160PMC
http://dx.doi.org/10.1038/srep15980DOI Listing

Publication Analysis

Top Keywords

heterogeneity mir-10b
12
circulating tumor
8
tumor cells
8
cancer patients
8
basis method
8
method demonstrate
8
demonstrate heterogeneity
8
heterogeneity
4
mir-10b expression
4
expression circulating
4

Similar Publications

miRNAs regulate cancer progression and serve as both biomarkers and therapeutic targets in chemotherapy and gene therapy. Current analytical platforms lack the capacity to concurrently satisfy single-cell resolution and target specificity while maintaining high-throughput performance and cost-effectiveness. This limitation underscores the critical demand for innovative precision detection technologies.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM), one of the deadliest cancers, resists current therapies, with drug development hindered by its high heterogeneity. However, GBM consistently relies on microRNA-10b (miR-10b), a key driver of glioma growth and a promising therapeutic target. miR-10b gene editing represents a potential treatment, but effective delivery strategies for gene editing systems in GBM remain unexplored.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal, adult-onset disease marked by a progressive degeneration of motor neurons (MNs) present in the spinal cord, brain stem and motor cortex. Death in most patients usually occurs within 2-4 years after symptoms onset. Despite promising progress in delineating underlying mechanisms, such as disturbed proteostasis, DNA/RNA metabolism, splicing or proper nucleocytoplasmic shuttling, there are no effective therapies for the vast majority of cases.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a debilitating condition characterized by significant sensory, motor, and autonomic dysfunctions, leading to severe physical, psychological, and financial burdens. The current therapeutic approaches for SCI show limited effectiveness, highlighting the urgent need for innovative treatments. MicroRNAs (miRNAs) like miR-10b-5p are known to play pivotal roles in gene expression regulation and have been implicated in various neurodegenerative diseases, including SCI.

View Article and Find Full Text PDF

Post-traumatic stress disorder is a mental disorder caused by exposure to severe traumatic life events. Currently, there are no validated biomarkers or laboratory tests that can distinguish between trauma survivors with and without post-traumatic stress disorder. In addition, the heterogeneity of clinical presentations of post-traumatic stress disorder and the overlap of symptoms with other conditions can lead to misdiagnosis and inappropriate treatment.

View Article and Find Full Text PDF