Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The transcription factor SOX2 is a key regulator of pluripotency in embryonic stem cells and plays important roles in early organogenesis. Recently, SOX2 expression was documented in various cancers and suggested as a cancer stem cell (CSC) marker. Here we identify the Ser/Thr-kinase AKT as an upstream regulator of SOX2 protein turnover in breast carcinoma (BC). SOX2 and pAKT are co-expressed and co-regulated in breast CSCs and depletion of either reduces clonogenicity. Ectopic SOX2 expression restores clonogenicity and in vivo tumorigenicity of AKT-inhibited cells, suggesting that SOX2 acts as a functional downstream AKT target. Mechanistically, we show that AKT physically interacts with the SOX2 protein to modulate its subcellular distribution. AKT kinase inhibition results in enhanced cytoplasmic retention of SOX2, presumably via impaired nuclear import, and in successive cytoplasmic proteasomal degradation of the protein. In line, blockade of either nuclear transport or proteasomal degradation rescues SOX2 expression in AKT-inhibited BC cells. Finally, AKT inhibitors efficiently suppress the growth of SOX2-expressing putative cancer stem cells, whereas conventional chemotherapeutics select for this population. Together, our results suggest the AKT/SOX2 molecular axis as a regulator of BC clonogenicity and AKT inhibitors as promising drugs for the treatment of SOX2-positive BC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791249PMC
http://dx.doi.org/10.18632/oncotarget.6183DOI Listing

Publication Analysis

Top Keywords

sox2 expression
12
sox2
10
breast carcinoma
8
stem cells
8
cancer stem
8
sox2 protein
8
akt-inhibited cells
8
proteasomal degradation
8
akt inhibitors
8
akt
7

Similar Publications

Embryonic-type neuroectodermal tumor (ENT; previously referred to as primitive neuroectodermal tumor, PNET) of the testis and gynecologic tract share morphologic features with small round blue cell tumors, including Ewing sarcoma (ES), yet are biologically, therapeutically, and prognostically distinct. The diagnosis of ENT can be challenging, and it is unclear if there are reliable biomarkers that can be used to confirm this diagnosis. This study characterized 50 ENTs arising from the testis (n=38) and gynecologic tract (n=12; 7 ovary/5 uterus) with 27 biomarkers (AE1/AE3, ATRX, CD99, chromogranin-A, Cyclin D1, Fli-1, GFAP, GLUT-1, IDH1/2, INSM1, MTAP, NANOG, Nestin, neurofilament, NKX2.

View Article and Find Full Text PDF

Background: Recent studies have highlighted that one of the main drivers for metastatic formation and resistance to the therapy are circulating tumor cells (CTCs) and cancer stem-like cells (CSCs). Measuring the CTCs has emerged as a non-invasive procedure for selecting the patients with higher risk of progression/relapse. However, still there are no methods enabling the identification of stem-like phenotype of the CTCs.

View Article and Find Full Text PDF

The three-dimensional (3D) culture system has emerged as an indispensable platform for modulating stem cell function in biomedicine, drug screening, and cell therapy. Despite a few studies confirming the functionality of 3D culture, the molecular factors underlying this process remain obscure. Here, we have utilized a hanging drop method to generate 3D spheroid-derived mesenchymal stem cells (3D MSCs) and compared them to conventionally 2D-cultured MSCs.

View Article and Find Full Text PDF

ER stress disrupts MFN2-related mitophagy via HRD1-PINK1/ parkin axis in bovine embryos.

Theriogenology

August 2025

College of Animal Sciences, Jilin University, Changchun, 130062, Jilin Province, China. Electronic address:

The endoplasmic reticulum and mitochondria are interconnected through the MAM structure, and mitochondrial fusion protein 2 (MFN2) is a key regulatory factor. In this study, tunicamycin (TM) was used to induce endoplasmic reticulum stress in bovine embryos to explore its effects on MFN2 expression, mitochondrial function and mitochondrial autophagy. The results showed that TM treatment significantly reduced the blastocyst rate and proliferation capacity of embryos, inhibited the expression of pluripotency genes (SOX2, CDX2, OCT4), and upregulated key proteins of the UPR pathway.

View Article and Find Full Text PDF

SOX2 drives esophageal squamous carcinoma by reprogramming lipid metabolism and histone acetylation landscape.

Nat Commun

September 2025

Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.

SOX2 is a potent oncodriver for various squamous cancers, but the underlying mechanism is largely unknown. Here we uncover a role of SOX2 in promoting global histone acetylation in esophageal squamous cancer cells (ESCCs). Mechanistic studies reveal that SOX2 promotes global histone acetylation in an AKT-independent manner, and does so by promoting histone acetylation at both SOX2 binding and non-SOX2 binding sites, and accounts for the formation of about half of the super-enhancers.

View Article and Find Full Text PDF