98%
921
2 minutes
20
We use computer simulations to investigate the amount of genetic variation for complex traits that can be revealed by single-SNP genome-wide association studies (GWAS) or regional heritability mapping (RHM) analyses based on full genome sequence data or SNP chips. We model a large population subject to mutation, recombination, selection, and drift, assuming a pleiotropic model of mutations sampled from a bivariate distribution of effects of mutations on a quantitative trait and fitness. The pleiotropic model investigated, in contrast to previous models, implies that common mutations of large effect are responsible for most of the genetic variation for quantitative traits, except when the trait is fitness itself. We show that GWAS applied to the full sequence increases the number of QTL detected by as much as 50% compared to the number found with SNP chips but only modestly increases the amount of additive genetic variance explained. Even with full sequence data, the total amount of additive variance explained is generally below 50%. Using RHM on the full sequence data, a slightly larger number of QTL are detected than by GWAS if the same probability threshold is assumed, but these QTL explain a slightly smaller amount of genetic variance. Our results also suggest that most of the missing heritability is due to the inability to detect variants of moderate effect (∼0.03-0.3 phenotypic SDs) segregating at substantial frequencies. Very rare variants, which are more difficult to detect by GWAS, are expected to contribute little genetic variation, so their eventual detection is less relevant for resolving the missing heritability problem.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676519 | PMC |
http://dx.doi.org/10.1534/genetics.115.177220 | DOI Listing |
JCO Precis Oncol
September 2025
Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA.
Purpose: mutations are classically seen in non-small cell lung cancers (NSCLCs), and EGFR-directed inhibitors have changed the therapeutic landscape in patients with -mutated NSCLC. The real-world prevalence of -mutated ovarian cancers has not been previously described. We aim to determine the prevalence of pathogenic or likely pathogenic mutations in ovarian cancer and describe a case of -mutated metastatic ovarian cancer with a durable response to osimertinib, an EGFR-directed targeted therapy.
View Article and Find Full Text PDFJCO Precis Oncol
September 2025
Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
Purpose: Tumor comprehensive genomic profiling (CGP) may detect potential germline pathogenic/likely pathogenic (P/LP) alterations as secondary findings. We analyzed the frequency of potentially germline variants and large rearrangements (LRs) in the RATIONAL study, an Italian multicenter, observational clinical trial that collects next-generation sequencing-based tumor profiling data, and evaluated how these findings were managed by the enrolling centers.
Patients And Methods: Patients prospectively enrolled in the pathway-B of the RATIONAL study and undergoing CGP with the FoundationOne CDx assays were included in the analysis.
Pol Merkur Lekarski
September 2025
NEAPOLIS UNIVERSITY, NEAPOLIS, CYPRUS.
Objective: Aim: To provide a comprehensive understanding of the profound developmental and medical challenges associated with this condition..
Patients And Methods: Materials and Methods: Τhis study employed a narrative review methodology, drawing upon a wide range of peer-reviewed scientific literature, clinical guidelines, and case studies.
Sci Adv
September 2025
The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
Influenza A viruses remain a global health threat, yet no universal antibody therapy exists. Clinical programs have centered on neutralizing mAbs, only to be thwarted by strain specificity and rapid viral escape. We instead engineered three non-neutralizing IgG2a mAbs that target distinct, overlapping epitopes within the conserved N terminus of the M2 ectodomain (M2e).
View Article and Find Full Text PDFSci Adv
September 2025
Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
Somatic mitochondrial DNA (mtDNA) mutations are frequently observed in tumors, yet their role in pediatric cancers remains poorly understood. The heteroplasmic nature of mtDNA-where mutant and wild-type mtDNA coexist-complicates efforts to define its contribution to disease progression. In this study, bulk whole-genome sequencing of 637 matched tumor-normal samples from the Pediatric Cancer Genome Project revealed an enrichment of functionally impactful mtDNA variants in specific pediatric leukemia subtypes.
View Article and Find Full Text PDF