Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Modeling protein-protein interactions (PPIs) using docking algorithms is useful for understanding biomolecular interactions and mechanisms. Typically, a docking algorithm generates a large number of docking poses, and it is often challenging to select the best native-like pose. A further challenge is to recognize key residues, termed as hotspots, at protein-protein interfaces, which contribute more in stabilizing a protein-protein interface.

Results: We had earlier developed a computer algorithm, called PPCheck, which ascribes pseudoenergies to measure the strength of PPIs. Native-like poses could be successfully identified in 27 out of 30 test cases, when applied on a separate set of decoys that were generated using FRODOCK. PPCheck, along with conservation and accessibility scores, was able to differentiate 'native-like and non-native-like poses from 1883 decoys of Critical Assessment of Prediction of Interactions (CAPRI) targets with an accuracy of 60%. PPCheck was trained on a 10-fold mixed dataset and tested on a 10-fold mixed test set for hotspot prediction. We obtain an accuracy of 72%, which is in par with other methods, and a sensitivity of 59%, which is better than most existing methods available for hotspot prediction that uses similar datasets. Other relevant tests suggest that PPCheck can also be reliably used to identify conserved residues in a protein and to perform computational alanine scanning.

Conclusions: PPCheck webserver can be successfully used to differentiate native-like and non-native-like docking poses, as generated by docking algorithms. The webserver can also be a convenient platform for calculating residue conservation, for performing computational alanine scanning, and for predicting protein-protein interface hotspots. While PPCheck can differentiate the generated decoys into native-like and non-native-like decoys with a fairly good accuracy, the results improve dramatically when features like conservation and accessibility are included. The method can be successfully used in ranking/scoring the decoys, as obtained from docking algorithms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4578551PMC
http://dx.doi.org/10.4137/BBI.S25928DOI Listing

Publication Analysis

Top Keywords

docking algorithms
12
ppcheck webserver
8
protein-protein interfaces
8
docking poses
8
conservation accessibility
8
10-fold mixed
8
hotspot prediction
8
computational alanine
8
native-like non-native-like
8
ppcheck
7

Similar Publications

Background: Ankylosing spondylitis (AS), a chronic inflammatory disorder affecting axial joints, is frequently complicated by uveitis. However, the molecular mechanisms linking AS to secondary uveitis remain poorly understood.

Methods: We integrated transcriptomic datasets from AS (GSE73754) and uveitis (GSE194060) cohorts to identify shared molecular pathways.

View Article and Find Full Text PDF

Background: Emerging evidence indicates that lactase-mediated histone lactylation can activate osteogenic gene expression and promote bone formation. However, the role of lactylation-related genes (LRGs) in osteoporosis (OP) remains unclear. This study aims to clarify the key roles of LRGs and the molecular mechanisms of related biomarkers in OP.

View Article and Find Full Text PDF

Predicting Antibody-Antigen (Ab-Ag) docking and structure-based design represent significant long-term and therapeutically important challenges in computational biology. We present SAGERank, a general, configurable deep learning framework for antibody design using Graph Sample and Aggregate Networks. SAGERank successfully predicted the majority of epitopes in a cancer target dataset.

View Article and Find Full Text PDF

Background: Prostate cancer (PRAD) is a common malignancy in men, and exposure to soil pollutants may contribute to its development. And exposure to soil pollutant has been linked to its development, as well as to other diseases including cardiovascular disorders, neurological conditions, and additional cancers.

Methods: This study integrates network toxicology, machine learning, and advanced technologies to investigate the mechanisms through which soil pollutants affect prostate cancer.

View Article and Find Full Text PDF

Recombinant DNA technology is widely used to produce industrially and pharmaceutically important proteins. In silico analysis, performed before executing wet lab experiments has been greatly helpful in this connection. A shift in protein analysis has been observed over the past decade, driven by advancements in bioinformatics databases, tools, software, and web servers.

View Article and Find Full Text PDF