98%
921
2 minutes
20
Recently, octapeptide LSCQLYQR (LRp), reducing growth of cis-platinum (cDDP) resistant ovarian carcinoma cells by inhibiting the monomer-monomer interface of the human enzyme thymidylate synthase, has been identified. As the peptide is not able to cross the cell membrane it requires an appropriate delivery system. In this work the application of SLNs, biocompatible and efficient tools for the intracellular drug transport, applied especially for lipophilic drugs, was exploited for the delivery of the hydrophilic peptide LRp. SLNs formulated in the absence/presence of small amount of squalene showed dimensions below 150 nm, negative zeta potential and good stability to the freeze-drying process. Even though the particles formulated with squalene exhibited a less ordered crystal lattice and a lower surface hydrophobicity, a rapid drug release from these nanocarriers occurred as a result of the relevant expulsion of the drug from the lipid core during lipid crystallization. On the contrary, SLNs formulated in the absence of squalene were able to incorporate more stably the peptide showing considerable cytotoxic effect on cDDP resistant C13* ovarian carcinoma cell line at concentration 50 times lower than that used previously with a marketed delivery system. From the cell cycle analysis by the propidium iodide test in SLNs-peptide treated cancer cells an increase of apoptosis percentage was observed, indicating that SLNs were able to carry efficiently the peptide until its enzymatic target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2015.09.040 | DOI Listing |
Objectives: Vitamin B12 plays a vital role in folate-mediated one-carbon metabolism (FOCM), a series of one-carbon transfer reactions that generate nucleotides (thymidylate (dTMP) and purines) and methionine. Inadequate levels of B12 impair FOCM, depressing de novo thymidylate (dTMP) synthesis, which in turn leads to uracil accumulation in DNA. This phenomenon has been well documented in nuclear DNA.
View Article and Find Full Text PDFChemphyschem
September 2025
Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, P. R. China.
The development of 5-fluorouracil (5-FU) analogs contributes to overcome its side effects and drug resistance. To explore more 5-FU analogs, the substituent effect of BO, NO, and PO on the geometric structure, electronic properties, and reactivity of 5-FU has been systematically studied by density functional theory calculations and molecular docking in this article. It is revealed that the introduced superhalogens can not only form stable covalent bonds with the pyrimidine ring, like the original F atom in 5-FU, but also pose significant effect on the geometric and electronic structures of 5-FU.
View Article and Find Full Text PDFPharmaceutics
August 2025
Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 211198, China.
Combining pemetrexed (PEM) with Osimertinib (OSI) improves outcomes in epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC), but optimal scheduling remains undefined. Sequential PEM → OSI strategies may outperform concurrent administration; however, the critical dosing interval determining synergy has not been explored. : PEM pharmacodynamics were divided into an OSI-antagonized early phase (S-phase arrest and DNA damage accumulation) and OSI-synergized late phase (DNA damage peak, apoptosis initiation, and feedback EGFR activation).
View Article and Find Full Text PDFSci Rep
August 2025
Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Hematology/Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
Cancer Drug Resist
July 2025
Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
Acquired resistance to 5-fluorouracil/leucovorin (5-FU/LV) frequently develops during treatment of metastatic colorectal (mCRC), but the causes are incompletely understood. We aim to: (i) identify the causes of 5-FU/LV resistance under physiological folate; and (ii) determine if a polymeric fluoropyrimidine (FP) CF10 remains potent to CRC cells selected for 5-FU/LV resistance. 5-FU/LV-resistant CRC cells were selected by repeated passaging with increasing 5-FU/LV concentrations, and resistance factors were calculated from dose-response studies.
View Article and Find Full Text PDF