Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Nanopore techniques have proven to be useful tools for single-molecule detection. The combination of optical detection and ionic current measurements enables a new possibility for the parallel readout of multiple nanopores without complex nanofluidics and embedded electrodes. In this study, we developed a new integrated system for the label-free optical and electrical detection of single molecules based on a metal-coated nanopore. The entire system, containing a dark-field microscopy system and an ultralow current detection system with high temporal resolution, was designed and fabricated. An Au-coated nanopore was used to generate the optical signal. Light scattering from a single Au-coated nanopore was measured under a dark-field microscope. A lab-built ultralow current detection system was designed for the correlated optical and electrical readout. This integrated system might provide more direct and detailed information on single analytes inside the nanopore compared with classical ionic current measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5fd00060b | DOI Listing |