98%
921
2 minutes
20
Early postnatal events exert powerful effects on development, inducing persistent functional alterations in different brain network, such as the catecholamine prefrontal-accumbal system, and increasing the risk of developing psychiatric disorders later in life. However, a vast body of literature shows that the interaction between genetic factors and early environmental conditions is crucial for expression of psychopathologies in adulthood. We evaluated the long-lasting effects of a repeated cross-fostering (RCF) procedure in 2 inbred strains of mice (C57BL/6J, DBA/2), known to show a different susceptibility to the development and expression of stress-induced psychopathologies. Coping behavior (forced swimming test) and preference for a natural reinforcing stimulus (saccharine preference test) were assessed in adult female mice of both genotypes. Moreover, c-Fos stress-induced activity was assessed in different brain regions involved in stress response. In addition, we evaluated the enduring effects of RCF on catecholamine prefrontal-accumbal response to acute stress (restraint) using, for the first time, a new "dual probes" in vivo microdialysis procedure in mouse. RCF experience affects behavioral and neurochemical responses to acute stress in adulthood in opposite direction in the 2 genotypes, leading DBA mice toward an "anhedonic-like" phenotype and C57 mice toward an increased sensitivity for a natural reinforcing stimulus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cercor/bhv204 | DOI Listing |
Haematologica
September 2025
Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama.
Idiopathic multicentric Castleman disease (iMCD) is a rare lymphoproliferative disorder characterized by systemic inflammation and lymphadenopathy. Two major clinical subtypes, idiopathic plasmacytic lymphadenopathy (iMCD-IPL) and iMCD with thrombocytopenia, anasarca, fever, renal dysfunction/reticulin fibrosis, and organomegaly (iMCD-TAFRO), exhibit distinct pathophysiologic mechanisms. While interleukin-6 (IL-6) is known to be elevated in iMCD, the differences in IL-6 production sources between subtypes remain unclear.
View Article and Find Full Text PDFHaematologica
September 2025
Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky,.
Maintaining a healthy pool of circulating red blood cells (RBCs) is essential for adequate perfusion, as even minor changes in the population can impair oxygen delivery, resulting in serious health complications including tissue ischemia and organ dysfunction. This responsibility largely falls to specialized macrophages in the spleen, known as red pulp macrophages, which efficiently take up and recycle damaged RBCs. However, questions remain regarding how these macrophages are acutely activated to accommodate increased demand.
View Article and Find Full Text PDFLab Chip
September 2025
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
Traumatic brain injuries (TBIs) are a risk factor for Alzheimer's disease (AD), and share several important pathological features including the development of neurofibrillary tangles (NFT) of tau protein. While this association is well established, the underlying pathogenesis is poorly defined and current treatment options remain limited, necessitating novel methods and approaches. In response we developed "TBI-on-a-chip", an trauma model utilizing murine cortical networks on microelectrode arrays (MEAs), capable of reproducing clinically relevant impact injuries while providing simultaneous morphological and electrophysiological readout.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China.
Drought stress dynamically reprograms specialised metabolism in medicinal plants. However, the transcriptional regulatory modules governing stress-adaptive metabolite synthesis remain poorly characterised. Here, we identified SbMYB8 as a drought-responsive transcription factor showing nuclear localisation and dose-dependent induction under drought in Scutellaria baicalensis.
View Article and Find Full Text PDF