Corticospinal Tract Tracing in the Marmoset with a Clinical Whole-Body 3T Scanner Using Manganese-Enhanced MRI.

PLoS One

Inserm, Imagerie cérébrale et handicaps neurologiques, UMR 825, F-31024, Toulouse, France; Université de Toulouse, UPS, Imagerie cérébrale et handicaps neurologiques, UMR 825, CHU Purpan, Place du Dr Baylac, F-31059, Toulouse, Cedex 9, France.

Published: June 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Manganese-enhanced MRI (MEMRI) has been described as a powerful tool to depict the architecture of neuronal circuits. In this study we investigated the potential use of in vivo MRI detection of manganese for tracing neuronal projections from the primary motor cortex (M1) in healthy marmosets (Callithrix Jacchus). We determined the optimal dose of manganese chloride (MnCl2) among 800, 400, 40 and 8 nmol that led to manganese-induced hyperintensity furthest from the injection site, as specific to the corticospinal tract as possible, and that would not induce motor deficit. A commonly available 3T human clinical MRI scanner and human knee coil were used to follow hyperintensity in the corticospinal tract 24h after injection. A statistical parametric map of seven marmosets injected with the chosen dose, 8 nmol, showed the corticospinal tract and M1 connectivity with the basal ganglia, substantia nigra and thalamus. Safety was determined for the lowest dose that did not induce dexterity and grip strength deficit, and no behavioral effects could be seen in marmosets who received multiple injections of manganese one month apart. In conclusion, our study shows for the first time in marmosets, a reliable and reproducible way to perform longitudinal ME-MRI experiments to observe the integrity of the marmoset corticospinal tract on a clinical 3T MRI scanner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4580626PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138308PLOS

Publication Analysis

Top Keywords

corticospinal tract
20
manganese-enhanced mri
8
clinical mri
8
mri scanner
8
corticospinal
5
mri
5
tract tracing
4
tracing marmoset
4
marmoset clinical
4
clinical whole-body
4

Similar Publications

Objective: Impaired ability to induce stepping after incomplete spinal cord injury (SCI) can limit the efficacy of locomotor training, often leaving patients wheelchair-bound. The cuneiform nucleus (CNF), a key mesencephalic locomotor control center, modulates the activity of spinal locomotor centers via the reticulospinal tract. Even with severe corticospinal damage, the widely distributed reticulospinal fibers frequently cross the lesion, and lumbosacral spinal locomotor centers remain responsive.

View Article and Find Full Text PDF

Background: Spinal Cord Injury (SCI) leads to partial or complete sensorimotor loss because of the spinal lesions caused either by trauma or any pathological conditions. Rehabilitation, one of the therapeutic methods, is considered to be a significant part of therapy supporting patients with spinal cord injury. Newer methods are being incorporated, such as repetitive Transcranial Magnetic Stimulation (rTMS), a Non-Invasive Brain Stimulation (NIBS) technique to induce changes in the residual neuronal pathways, facilitating cortical excitability and neuroplasticity.

View Article and Find Full Text PDF

Purpose: Resection of glioblastomas infiltrating the motor cortex and corticospinal tract (CST) is often linked to increased perioperative morbidity. Navigated transcranial magnetic stimulation (nTMS) motor mapping has been advocated to increase patient safety in these cases. The additional impact of patient frailty on overall outcome after resection of cases with increased risk for postoperative motor deficits as identified with nTMS needs to be investigated.

View Article and Find Full Text PDF

Introduction: We aimed to clarify the effects of an active touch intervention using different textures on corticospinal excitability.

Methods: A total of 30 healthy individuals participated in the active touch intervention. Two tactile stimuli were used for intervention: smooth (silk) and rough (hessian) stimuli.

View Article and Find Full Text PDF

Introduction: Absence of language development is a condition encountered across a large range of neurodevelopmental disorders, including a significant proportion of children with autism spectrum disorder. The neurobiological underpinnings of non-verbal ASD (nvASD) remain poorly understood.

Methods: This study employed multimodal MRI to investigate white matter (WM) microstructural abnormalities in nvASD, focusing on language-related pathways.

View Article and Find Full Text PDF