Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mendel is credited for discovering Laws of Heredity, but his work has come under criticism on three grounds: for possible falsification of data to fit his expectations, for getting undue credit for the laws of heredity without having ideas of segregation and independent assortment, and for being interested in the development of hybrids rather than in the laws of heredity. I present a brief review of these criticisms and conclude that Mendel deserved to be called the father of genetics even if he may not, and most likely did not, have clear ideas of segregation and particulate determiners as we know them now. I argue that neither Mendel understood the evolutionary significance of his findings for the problem of genetic variation, nor would Darwin have understood their significance had he read Mendel's paper. I argue that the limits to imagination, in both cases, came from their mental framework being shaped by existing paradigms-blending inheritance in the case of Darwin, hybrid development in the case of Mendel. Like Einstein, Darwin's natural selection was deterministic; like Niels Bohr, Mendel's Laws were probabilistic-based on random segregation of trait-determining "factors". Unlike Einstein who understood quantum mechanics, Darwin would have been at a loss with Mendel's paper with no guide to turn to. Geniuses in their imaginations are like heat-seeking missiles locked-in with their targets of deep interests and they generally see things in one dimension only. Imagination has limits; unaided imagination is like a bird without wings--it goes nowhere.

Download full-text PDF

Source
http://dx.doi.org/10.1139/gen-2015-0107DOI Listing

Publication Analysis

Top Keywords

laws heredity
12
limits imagination
8
mendel's laws
8
ideas segregation
8
mendel's paper
8
laws
5
mendel
5
imagination 150th
4
150th anniversary
4
mendel's
4

Similar Publications

Background: Enteroviruses, including Coxsackie B (CVB) viruses, can cause severe diseases such as myocarditis, pancreatitis, and meningitis. Vaccines can prevent these complications, but conserved non-neutralizing epitopes in the viral capsid may limit their effectiveness. The immunodominant PALXAXETG motif, located in the VP1 N-terminus, is a highly conserved region in enteroviruses that elicits non-neutralizing antibody responses.

View Article and Find Full Text PDF

Just as Gregor Mendel's laws of inheritance laid the foundation for modern genetics, the emergence of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas systems has catalyzed a new era in precision genome engineering. CRISPR/Cas has revolutionized rice ( L.) breeding by enabling precise, transgene-free edits to improve yield, nutrition, and stress tolerance.

View Article and Find Full Text PDF

Background: Human mesenchymal stem cells (MSCs) are a promising stem cell source; however, their therapeutic efficacy in chronic wound healing remains limited. This study evaluates the therapeutic potential of transforming growth factor (TGF)-β1-modified, three-dimensionally cultured MSCs (A/T-3D) for enhancing wound healing.

Methods: The TGF-β1 gene was inserted into a safe genomic locus in adipose-derived MSCs (ASCs) using transcription activator-like effector nucleases.

View Article and Find Full Text PDF

Background Mitochondrial-related genes (MRGs) and programmed cell death-related genes (PCD-RGs) have been proven to play important roles in obsessive-compulsive disorder (OCD), and identifying their shared biomarkers is conducive to the diagnosis and research of OCD. Methods Differentially expressed genes (DEGs) between OCD and control samples were identified from the GSE78104 dataset. Differentially expressed MRGs (DE MRGs) and PCD-RGs (DE-PCD-RGs) were derived by intersecting with MRG and PCD-RG gene sets, respectively, resulting in DE mitochondrial-related PCD (DE-MPCD) genes.

View Article and Find Full Text PDF

Identification of a dominant stripe rust resistance gene YrXY on chromosome 6R in hexaploid triticale.

Theor Appl Genet

August 2025

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.

Breeding resistant cultivars is the most effective strategy to control stripe rust in cereal crops. The hexaploid triticale line Xinyi is highly resistant to stripe rust at the seedling and adult plant stages. A segregating F population derived from a cross between Xinyi and the susceptible hexaploid triticale cultivar Zhongsi1048 was assessed to understand the genetic architecture of stripe rust resistance.

View Article and Find Full Text PDF