Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants.

Sci Signal

Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), CPI Edificio 8E, Avda. Ingeniero Fausto Elio s/n, 46022 Valencia, Spain.

Published: September 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Abscisic acid (ABA) is a phytohormone that inhibits growth and enhances adaptation to stress in plants. ABA perception and signaling rely on its binding to receptors of the pyrabactin resistance1/PYR1-like/regulatory components of ABA receptors (PYR/PYL/RCAR) family, the subsequent inhibition of clade A type 2C protein phosphatases (PP2Cs), and the phosphorylation of ion channels and transcription factors by protein kinases of the SnRK2 family. Nitric oxide (NO) may inhibit ABA signaling because NO-deficient plants are hypersensitive to ABA. Regulation by NO often involves posttranslational modification of proteins. Mass spectrometry analysis of ABA receptors expressed in plants and recombinant receptors modified in vitro revealed that the receptors were nitrated at tyrosine residues and S-nitrosylated at cysteine residues. In an in vitro ABA-induced, PP2C inhibition assay, tyrosine nitration reduced receptor activity, whereas S-nitrosylated receptors were fully capable of ABA-induced inhibition of the phosphatase. PYR/PYL/RCAR proteins with nitrated tyrosine, which is an irreversible covalent modification, were polyubiquitylated and underwent proteasome-mediated degradation. We propose that tyrosine nitration, which requires NO and superoxide anions, is a rapid mechanism by which NO limits ABA signaling under conditions in which NO and reactive oxygen species are both produced.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scisignal.aaa7981DOI Listing

Publication Analysis

Top Keywords

aba receptors
12
tyrosine nitration
12
aba signaling
12
aba
9
nitric oxide
8
nitrated tyrosine
8
receptors
7
tyrosine
5
inactivation pyr/pyl/rcar
4
pyr/pyl/rcar aba
4

Similar Publications

Nitrogen (N) is essential for plant growth, but excessive fertilizer use decreases nitrogen use efficiency (NUE) and raises environmental concerns. This study investigated the effect of exogenous abscisic acid (ABA; 50 μM) application on rapeseed (Brassica napus L.) plants under hydroponic conditions with high (7.

View Article and Find Full Text PDF

Pan-Genome-Based Characterization of the PYL Transcription Factor Family in .

Plants (Basel)

August 2025

Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Aral 843300, China.

Abscisic acid (ABA) is a key phytohormone involved in regulating plant growth and responses to environmental stress. As receptors of ABA, pyrabactin resistance 1 (PYR)/PYR1-like (PYL) proteins play a central role in initiating ABA signal transduction. In this study, a total of 30 genes were identified and classified into three sub-families (PYL I-III) in the pan-genome of 17 species, through phylogenetic analysis.

View Article and Find Full Text PDF

Sequential protease deployment under acidic conditions degrades host defense proteins and drives Valsa mali pathogenicity in apple.

Plant Physiol

August 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.

Apple Valsa canker, caused by the ascomycete fungus Valsa mali, is a severe disease threatening apple (Malus domestica) production, particularly in East Asia. The pH at the infection site decreases from 6.0 to around 3.

View Article and Find Full Text PDF

Abscisic acid (ABA) signaling in stomatal guard cells is crucial for plants to cope with abiotic stress condition. Pyrabactin is a synthetic agonist of ABA that has a selective affinity to limited isoforms of ABA receptors. Here we investigated the differential utilization of downstream signaling events in guard cell ABA signaling under specific receptor isoforms taking advantage of pyrabactin affinity.

View Article and Find Full Text PDF