98%
921
2 minutes
20
Trypsin was successfully entrapped in situ into nanofibers of poly(ϵ-caprolactone) (PCL) prepared by electrospinning. The spinning dope was an emulsion consisting of an aqueous phase with the solubilized enzyme in a pH buffer plus an oil phase of the polymer solubilized in chloroform (CF)/dimethylformamide (DMF). The optimized materials were composed by random arrays of bead-free fibers with outer diameters in the range 110-180 nm without showing core-shell structure. The fiber size and morphology, membrane porosity and surface properties were shown to be influenced by the polymer concentration and the composition ratio of the solvent mixture, and also by the presence of the enzyme. The activity of the immobilized trypsin was studied toward both a low-molecular weight synthetic substrate (BAPNA) and a protein (casein). Fluorescence microscopy, the increasing hydrophilicity of the fibrous membrane and the observed catalytic activity confirmed the entrapment of the enzyme into the PCL nanofibers. The best activity retention (∼66% toward BAPNA) was achieved using 0.20 g/mL PCL in CF/DMF [75:25], with trypsin in an aqueous buffer at pH 7.1 in the presence of benzamidine and Span80. The immobilized enzyme showed satisfactory operational stability retaining ∼59% of its initial activity after five reaction cycles. Compared with the free enzyme, the storage (at 4 °C) and thermal stability of the immobilized enzyme were highly improved. The retained catalytic activity and the observed reusability can be explained by a heterogeneous distribution of the enzyme within the polymer fiber influenced by the electrostatic field during the electrospinning process, enabling a preferential location near the fiber surface but simultaneously assuring minimal leaching out during operations. Results suggest that trypsin-PCL fibrous membranes may be useful for concomitant proteolytic and separation commercial applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.enzmictec.2015.07.002 | DOI Listing |
FEBS J
September 2025
Neutron Scattering Division, Oak Ridge National Laboratory, USA.
Serine hydroxymethyltransferase (SHMT) is a critical enzyme in the one-carbon (1C) metabolism pathway catalyzing the reversible conversion of L-Ser into Gly and concurrent transfer of 1C unit to tetrahydrofolate (THF) to give 5,10-methylene-THF (5,10-MTHF), which is used in the downstream syntheses of biomolecules critical for cell proliferation. The cellular 1C metabolism is hijacked by many cancer types to support cancer cell proliferation, making SHMT a promising target for the design and development of novel small-molecule antimetabolite chemotherapies. To advance structure-assisted drug design, knowledge of SHMT catalysis is crucial, but can only be fully realized when the atomic details of each reaction step governed by the acid-base catalysis are elucidated by visualizing active site hydrogen atoms.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Department of Physics, University of Lucknow, Lucknow, India; Department of Physics and Astrophysics, University of Delhi, India. Electronic address:
Background: Water contamination is a global challenge, primarily due to heavy metal ions like lead (Pb), iron (Fe), cadmium (Cd), andmercury (Hg) as well as dyes. These pollutants enter the ecosystem from industrial waste and runoff, accumulate in the environment and pose a high risk to humans, animals and plants. Various sensors, such as colorimetric sensors, and electrochemical sensors have been developed to detect these ions and dyes.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
State Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Detection of Veterinary Drug Residues and Illegal Additives of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China. Electronic address: haiyang
Background: Aflatoxin B1 (AFB1) stands among the most toxic naturally occurring substances, with its acute toxicity characterized by the induction of acute hepatic necrosis, hemorrhage, and even fatal outcomes, thereby posing a profound threat to human health. Contamination of AFB1 in food commodities can arise at multiple stages throughout the production cycle, including cultivation, storage, and processing. This contamination cascade permeates the entire food supply chain, encompassing primary agricultural products as well as a diverse range of processed food items.
View Article and Find Full Text PDFProtein Expr Purif
September 2025
Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam; Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam. Electronic addr
The 3C-like protease (3CLpro) of SARS-CoV-2 is a crucial target for antiviral drugs due to its essential role in viral polyprotein processing. In this study, we designed and produced a modular fluorescent recombinant substrate (6×His-ECFP-AVLQSGFRK-EYFP), which was then immobilized on Ni-NTA magnetic beads (Ni-NTA-6×His-ECFP-AVLQSGFRK-EYFP) for the assay of 3CLpro activity. Upon cleavage at the specific AVLQ↓SG motif, the EYFP fragment was released into the supernatant and quantified via fluorescence measurement (Ex/Em = 480/528 nm).
View Article and Find Full Text PDFEnviron Res
September 2025
Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan; High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan. Electronic address:
The persistent presence of the pharmaceutical pollutant nilutamide (NLT) in environmental and biological systems poses a serious threat to ecosystems and human health, necessitating efficient and sustainable detection strategies. In this study, we present a nanoengineered SrWO@MXene electrocatalyst as a high-performance platform for electrochemical sensing. The hybrid material seamlessly integrates the catalytic activity and electrochemical stability of SrWO with the exceptional conductivity and tunable surface chemistry of MXenes, resulting in a synergistic architecture optimized for rapid and selective NLT detection.
View Article and Find Full Text PDF