The RING E3 Ligase KEEP ON GOING Modulates JASMONATE ZIM-DOMAIN12 Stability.

Plant Physiol

Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R

Published: October 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Jasmonate (JA) signaling in plants is mediated by the JASMONATE ZIM-DOMAIN (JAZ) proteins that repress the activity of several transcription factors regulating JA-inducible gene expression. The hormone JA-isoleucine triggers the interaction of JAZ repressor proteins with the F-box protein CORONATINE INSENSITIVE1 (COI1), part of an S-phase kinase-associated protein1/Cullin1/F-box protein COI1 (SCF(COI1)) E3 ubiquitin ligase complex, and their degradation by the 26S proteasome. In Arabidopsis (Arabidopsis thaliana), the JAZ family consists of 13 members. The level of redundancy or specificity among these members is currently not well understood. Here, we characterized JAZ12, encoded by a highly expressed JAZ gene. JAZ12 interacted with the transcription factors MYC2, MYC3, and MYC4 in vivo and repressed MYC2 activity. Using tandem affinity purification, we found JAZ12 to interact with SCF(COI1) components, matching with observed in vivo ubiquitination and with rapid degradation after treatment with JA. In contrast to the other JAZ proteins, JAZ12 also interacted directly with the E3 RING ligase KEEP ON GOING (KEG), a known repressor of the ABSCISIC ACID INSENSITIVE5 transcription factor in abscisic acid signaling. To study the functional role of this interaction, we circumvented the lethality of keg loss-of-function mutants by silencing KEG using an artificial microRNA approach. Abscisic acid treatment promoted JAZ12 degradation, and KEG knockdown led to a decrease in JAZ12 protein levels. Correspondingly, KEG overexpression was capable of partially inhibiting COI1-mediated JAZ12 degradation. Our results provide additional evidence for KEG as an important factor in plant hormone signaling and a positive regulator of JAZ12 stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4587444PMC
http://dx.doi.org/10.1104/pp.15.00479DOI Listing

Publication Analysis

Top Keywords

abscisic acid
12
ring ligase
8
ligase going
8
jaz proteins
8
transcription factors
8
jaz12
8
jaz12 interacted
8
jaz12 degradation
8
keg
6
jaz
5

Similar Publications

Erythrina velutina is a tree that thrives in the shallow rocky soils of the dry and hot Caatinga, a unique Brazilian biome. It is rich in specialized metabolites with medicinal properties. Indeed, alkaloids and flavonoids are phytochemical markers of the genus.

View Article and Find Full Text PDF

We report the genome sequence of strain AX7B, isolated from the pea rhizosphere and capable of utilizing abscisic acid as a sole carbon source. The complete genome consists of a 6.62 Mb chromosome and a 0.

View Article and Find Full Text PDF

An innovative 4D targeted method was developed for the determination of 61 bioactive compounds in royal jelly (RJ) related to their health-promoting properties. The method, apart from high-resolution mass spectrometry, exploits the advantages of vacuum-insulated probe-heated electrospray ionization source (VIP-HESI), reducing thermal degradation, and trapped ion mobility spectrometry (TIMS), improving selectivity and compound identification. The optimization of VIP-HESI ionization parameters using experimental designs showed that the critical parameters were the capillary voltage as well as the probe gas flow rate and temperature.

View Article and Find Full Text PDF

Metabolomic and transcriptomic analyses unveil the accumulation of shikimic acid in the leaves of .

Front Plant Sci

August 2025

State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, China.

Introduction: Shikimic acid, as a critical precursor for oseltamivir synthesis in antiviral pharmaceuticals, faces escalating global demand. Although leaves have emerged as a promising natural source of shikimic acid owing to their exceptional content of this valuable compound and substantial biomass production capacity, the molecular mechanisms underlying its biosynthesis and downstream metabolic regulation in leaves remain largely unknown.

Methods: Here, the concentration of shikimic acid in 33 clones were assessed, and 1# (referred as HS) had the highest level.

View Article and Find Full Text PDF

Correction: CRISPR/Cas9 editing of  enhances drought tolerance in potato (Solanum tuberosum).

Front Plant Sci

August 2025

Laboratorio de Agrobiotecnología, Estación Experimental Agropecuaria (EEA) Balcarce-Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) Unidad de Estudios Agropecuarios y Desarrollo de la Innovación Tecnológica Agropecuaria (UEDDINTA)-Consejo Nacional de

[This corrects the article DOI: 10.3389/fpls.2025.

View Article and Find Full Text PDF