An Interactive Computer Session to Initiate Physical Activity in Sedentary Cardiac Patients: Randomized Controlled Trial.

J Med Internet Res

Implementation and Systems Science Laboratory, Department of Human, Nutrition, Foods, and Exercise, Virginia Tech, Roanoke, VA, United States.

Published: August 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Physical activity (PA) improves many facets of health. Despite this, the majority of American adults are insufficiently active. Adults who visit a physician complaining of chest pain and related cardiovascular symptoms are often referred for further testing. However, when this testing does not reveal an underlying disease or pathology, patients typically receive no additional standard care services. A PA intervention delivered within the clinic setting may be an effective strategy for improving the health of this population at a time when they may be motivated to take preventive action.

Objective: Our aim was to determine the effectiveness of a tailored, computer-based, interactive personal action planning session to initiate PA among a group of sedentary cardiac patients following exercise treadmill testing (ETT).

Methods: This study was part of a larger 2x2 randomized controlled trial to determine the impact of environmental and social-cognitive intervention approaches on the initiation and maintenance of weekly PA for patients post ETT. Participants who were referred to an ETT center but had a negative-test (ie, stress tests results indicated no apparent cardiac issues) were randomized to one of four treatment arms: (1) increased environmental accessibility to PA resources via the provision of a free voucher to a fitness facility in close proximity to their home or workplace (ENV), (2) a tailored social cognitive intervention (SC) using a "5 As"-based (ask, advise, assess, assist, and arrange) personal action planning tool, (3) combined intervention of both ENV and SC approaches (COMBO), or (4) a matched contact nutrition control (CON). Each intervention was delivered using a computer-based interactive session. A general linear model for repeated measures was conducted with change in PA behavior from baseline to 1-month post interactive computer session as the primary outcome.

Results: Sedentary participants (n=452; 34.7% participation rate) without a gym membership (mean age 58.57 years; 59% female, 78% white, 12% black, 11% Hispanic) completed a baseline assessment and an interactive computer session. PA increased across the study sample (F1,441=30.03, P<.001). However, a time by condition interaction (F3,441=8.33, P<.001) followed by post hoc analyses indicated that SC participants exhibited a significant increase in weekly PA participation (mean 45.1, SD 10.2) compared to CON (mean -2.5, SD 10.8, P=.004) and ENV (mean 8.3, SD 8.1, P<.05). Additionally, COMBO participants exhibited a significant increase in weekly PA participation (mean 53.4, SD 8.9) compared to CON (P<.001) and ENV (P=.003) participants. There were no significant differences between ENV and CON or between SC and COMBO.

Conclusions: A brief, computer-based, interactive personal action planning session may be an effective tool to initiate PA within a health care setting, in particular as part of the ETT system.

Trial Registration: Clinicaltrials.gov NCT00432133, http://clinicaltrials.gov/ct2/show/NCT00432133 (Archived by WebCite at http://www.webcitation.org/6aa8X3mw1).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642390PMC
http://dx.doi.org/10.2196/jmir.3759DOI Listing

Publication Analysis

Top Keywords

interactive computer
12
computer session
12
session initiate
8
physical activity
8
sedentary cardiac
8
cardiac patients
8
randomized controlled
8
controlled trial
8
intervention delivered
8
computer-based interactive
8

Similar Publications

Bacillus drives functional states in synthetic plant root bacterial communities.

Genome Biol

September 2025

Department of Biology, Plant-Microbe Interactions, Science for Life, Utrecht University, Utrecht, 3584CH, The Netherlands.

Background: Plant roots release root exudates to attract microbes that form root communities, which in turn promote plant health and growth. Root community assembly arises from millions of interactions between microbes and the plant, leading to robust and stable microbial networks. To manage the complexity of natural root microbiomes for research purposes, scientists have developed reductionist approaches using synthetic microbial inocula (SynComs).

View Article and Find Full Text PDF

Although dynamical systems models are a powerful tool for analysing microbial ecosystems, challenges in learning these models from complex microbiome datasets and interpreting their outputs limit use. We introduce the Microbial Dynamical Systems Inference Engine 2 (MDSINE2), a Bayesian method that learns compact and interpretable ecosystems-scale dynamical systems models from microbiome timeseries data. Microbial dynamics are modelled as stochastic processes driven by interaction modules, or groups of microbes with similar interaction structure and responses to perturbations, and additionally, noise characteristics of data are modelled.

View Article and Find Full Text PDF

Objectives: Computer-aided detection (CADe) systems improve adenoma detection during colonoscopy, but the influence of bowel preparation quality on CADe performance is unclear. This study assessed whether different levels of adequate bowel preparation affect CADe effectiveness.

Methods: A post-hoc pooled analysis was conducted using individual patient data from three randomized controlled trials comparing CADe-assisted colonoscopy to standard colonoscopy (SC).

View Article and Find Full Text PDF

Traditionally, clinical devices are designed, tested and improved through lengthy and expensive laboratory experiments and clinical trials [1]. More recently, computational methods have allowed for rapid testing, speeding up the design process and enabling far more complete searches of design space. While computational models cannot fully capture the complexities of biological systems, they provide valuable insights into crucial underlying mechanisms, such as the effects of fluid-structure interactions (FSIs).

View Article and Find Full Text PDF

Although phasic alertness generally benefits cognitive performance, it often increases the impact of distracting information, resulting in impaired decision-making and cognitive control. However, it is unclear why phasic alertness has these negative effects. Here, we present a novel, biologically-informed account, according to which phasic alertness generates a transient, evidence-independent input to the decision process.

View Article and Find Full Text PDF