98%
921
2 minutes
20
Retinitis pigmentosa is a leading cause of inherited blindness, with no effective treatment currently available. Mutations primarily in genes expressed in rod photoreceptors lead to early rod death, followed by a slower phase of cone photoreceptor death. Rd1 mice provide an invaluable animal model to evaluate therapies for the disease. We previously reported that overexpression of histone deacetylase 4 (HDAC4) prolongs rod survival in rd1 mice. Here we report a key role of a short N-terminal domain of HDAC4 in photoreceptor protection. Expression of this domain suppresses multiple cell death pathways in photoreceptor degeneration, and preserves even more rd1 rods than the full-length HDAC4 protein. Expression of a short N-terminal domain of HDAC4 as a transgene in mice carrying the rd1 mutation also prolongs the survival of cone photoreceptors, and partially restores visual function. Our results may facilitate the design of a small protein therapy for some forms of retinitis pigmentosa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538705 | PMC |
http://dx.doi.org/10.1038/ncomms9005 | DOI Listing |
Wien Klin Wochenschr
September 2025
3rd Medical Department with Cardiology and Intensive Care Medicine, Clinik Ottakring (Wilhelminenhospital), Montleartstraße 37, 1160, Vienna, Austria.
Background: Acute heart failure (AHF) significantly contributes to cardiovascular morbidity and mortality, bearing a substantial socioeconomic burden. While the dynamics of chronic heart failure have been extensively explored in global patient cohorts, comprehensive data specific to AHF remain limited.
Methods: This retrospective, single-center, real-world study comprises hospitalized patients with AHF, admitted to a tertiary care hospital in Vienna, Austria, between 1 January 2012 and 31 December 2019.
Background Over 300 mutations in have been identified as causes of early-onset Alzheimer's disease (EOAD). While these include missense mutations and a few insertions, deletions, or duplications, none result in open reading frame shifts, and all alter γ-secretase function to increase the long/short Aβ ratio. Methods We identified a novel heterozygous nonsense variant, c.
View Article and Find Full Text PDFMethionine aminopeptidase (MAP) is useful in chemical biology research for N-terminal processing of peptides and proteins and in medicine as a potential therapeutic target. These technologies can benefit from a precise understanding of the enzyme's substrate specificity profiled over a wide chemical space, including not just natural substrates, peptides containing N-terminal Met, but also unnatural peptide substrates containing N-terminal Met analogues that are also cleaved by MAP like homopropargylglycine (HPG) and azidohomoalanine (AHA). A few studies have profiled substrate specificity for cleavage of N-terminal Met, but none have systematically done so using N-terminal Met analogues.
View Article and Find Full Text PDFFEBS J
September 2025
AgResearch Ltd., Grasslands, Palmerston North, New Zealand.
Epimerases and dehydratases are widely studied members of the extended short-chain dehydrogenase/reductase (SDR) enzyme superfamily and are important in nucleotide sugar conversion and diversification, for example, the interconversion of uridine diphosphate (UDP)-linked glucose and galactose. Methanothermobacter thermautotrophicus contains a cluster of genes, the annotations of which indicate involvement in glycan biosynthesis such as that of cell walls or capsular polysaccharides. In particular, genes encoding UDP-glucose 4-epimerase related protein (Mth375), UDP-glucose 4-epimerase homologue (Mth380) and dTDP-glucose 4,6-dehydratase related protein (Mth373) may be involved in the biosynthesis of an unusual aminosugar in pseudomurein.
View Article and Find Full Text PDFWorld J Methodol
December 2025
The 2 Department of Propaedeutic Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece.
Hepatic ischemia-reperfusion injury is an important mechanism of liver failure that occurs in many clinical conditions, including massive hemorrhage, major hepatectomy and liver transplantation, and leads to poor outcomes. The underlying cellular and molecular reactions are extremely complex and not completely understood. Anaerobic metabolism, ATP depletion, intracellular acidosis, calcium overload, mitochondrial dysfunction, oxidative stress, activation of Kupffer cells and neutrophils, platelet aggregation, nitric oxide production, activation of the complement system and overexpression of cytokines and chemokines constitute the main pathophysiological actions and pathways for possible therapeutic strategies.
View Article and Find Full Text PDF