98%
921
2 minutes
20
The leaves of Piscidia carthagenensis provided new 7,2',5'-trimethoxy-3',4'-methylenedioxyisoflavone (1), admixed with known 6,7-dimethoxy-3',4'-methylenedioxyisoflavone (2), and 5,4'-dihydroxy-7,2',5'-trimethoxyisoflavone (3), which were separated by extensive fractional solubillization. Selective irradiation of the H-5 "singlet" of 2 allowed distinction of the two methoxy group signals, whose chemical shift difference is only 0.004 ppm (1.2 Hz at 300 MHz). The (1)H and (13)C NMR data of 3 were assigned with the aid of HETCOR and gHMBC measurements. Although 1 looked inhomogeneous in the solid state, its solution structure followed from (1)H NMR measurements, where it looked homogeneous. To clarify the solid state aspect and confirm the structure of 1, two types of crystals were mechanically separated and subjected to single crystal X-ray diffraction measurements. This study revealed polymorphism because of the concomitant presence of orthorhombic and triclinic crystals, but showed no atropisomerism. The structure of 3 was also verified by X-ray diffraction crystallography.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrc.4278 | DOI Listing |
JAMA Psychiatry
September 2025
School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia.
Importance: Cannabis is the most commonly used illicit drug, with 10% to 30% of regular users developing cannabis use disorder (CUD), a condition linked to altered hippocampal integrity. Evidence suggests high-intensity interval training (HIIT) enhances hippocampal structure and function, with this form of physical exercise potentially mitigating CUD-related cognitive and mental health impairments.
Objective: To determine the impact of a 12-week HIIT intervention on hippocampal integrity (ie, structure, connectivity, biochemistry) compared with 12 weeks of strength and resistance (SR) training in CUD.
JAMA
September 2025
Division of Surgery and Interventional Science, UCL, London, United Kingdom.
Importance: Multiparametric magnetic resonance imaging (MRI), with or without prostate biopsy, has become the standard of care for diagnosing clinically significant prostate cancer. Resource capacity limits widespread adoption. Biparametric MRI, which omits the gadolinium contrast sequence, is a shorter and cheaper alternative offering time-saving capacity gains for health systems globally.
View Article and Find Full Text PDFCereb Cortex
August 2025
Section on Functional Imaging Methods & Functional MRI Core Facility, National Institute of Mental Health, 10 Center Drive, Rm 1D80, Bethesda, MD 20892, United States.
Statistical Parametric Mapping (SPM) has been profoundly influential to neuroimaging as it has fostered rigorous, statistically grounded structure for model-based inferences that have led to mechanistic insights about the human brain over the past 30 years. The statistical constructs shared with the world through SPM have been instrumental for deriving meaning from neuroimaging data; however, they require simplifying assumptions which can provide results that, while statistically sound, may not accurately reflect the mechanisms of brain function. A platform that fosters the exploration of the rich and varying neuronal and physiologic underpinnings of the measured signals and their associations to behavior and physiologic measures needs a different set of tools.
View Article and Find Full Text PDFEur Radiol Exp
September 2025
Department of Radio-diagnosis, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt.
Background: Bone marrow (BM) lesion differentiation remains challenging, and quantitative magnetic resonance imaging (MRI) may enhance accuracy over conventional methods. We evaluated the diagnostic value and inter-reader reliability of Dixon-based signal drop (%drop) and fat fraction percentage (%fat) as adjuncts to existing protocols.
Materials And Methods: In this prospective two-center study, 172 patients with BM signal abnormalities underwent standardized 1.
J Magn Reson Imaging
September 2025
Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Background: Carotid artery stenosis is a major cause of stroke. Non-contrast MR angiography (MRA) using time-spatial labeling inversion pulse (Time-SLIP) may offer potential advantages over 3D time-of-flight (TOF)-MRA for simultaneous visualization of carotid, vertebral, and subclavian arteries, but remains uninvestigated.
Purpose: To determine optimal black blood inversion time (TI) for visualizing the carotid and subclavian arteries using three-dimensional (3D) fast field echo (FFE) Time-SLIP MRA, and to compare its image quality with 3D TOF-MRA.