Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In this paper, a reflection type photoelectric pulse wave sensor was designed for short-term pulse rate variability analysis. Photoplethysmography (PPG) signals and ECG signals (obtained with the Dimetek MicroECG recorder Dicare-m1CP) were recorded synchronously from 20 healthy subjects. The analytical results show a significant correlation (correlation coefficient r > 0.99) between the PPG-derived peak-to-peak (PP) intervals and the ECG-derived RR intervals. Besides, there are no significant differences (P > 0.05) between the HRV measured by ECG and the PRV quantified by the PPG whether in time domain, frequency domain, or the Poincaré plot parameters. The experimental results suggest that the PPG-based short-term PRV analysis can be consistent with the ECG-based HRV measurement in wearable smart devices.
Download full-text PDF |
Source |
---|