Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

External stimuli are powerful tools that naturally control protein assemblies and functions. For example, during viral entry and exit changes in pH are known to trigger large protein conformational changes. However, the molecular features stabilizing the higher pH structures remain unclear. Here we elucidate the conformational change of a self-assembling peptide that forms either small or large nanotubes dependent on the pH. The sub-angstrom high-pH peptide structure reveals a globular conformation stabilized through a strong histidine-serine H-bond and a tight histidine-aromatic packing. Lowering the pH induces histidine protonation, disrupts these interactions and triggers a large change to an extended β-sheet-based conformation. Re-visiting available structures of proteins with pH-dependent conformations reveals both histidine-containing aromatic pockets and histidine-serine proximity as key motifs in higher pH structures. The mechanism discovered in this study may thus be generally used by pH-dependent proteins and opens new prospects in the field of nanomaterials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4518280PMC
http://dx.doi.org/10.1038/ncomms8771DOI Listing

Publication Analysis

Top Keywords

ph-dependent proteins
8
higher structures
8
atomic view
4
view histidine
4
histidine environment
4
environment stabilizing
4
stabilizing higher-ph
4
higher-ph conformations
4
conformations ph-dependent
4
proteins external
4

Similar Publications

Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.

View Article and Find Full Text PDF

pH-induced conformational changes and inhibition of the Lassa virus spike complex.

Cell Host Microbe

August 2025

Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel. Electronic address:

Lassa virus (LASV) is a devastating human pathogen with no vaccines and limited therapeutics. The LASV class-I spike complex engages target cells via binding its primary host receptor, matriglycan, followed by macropinocytosis and binding of its secondary receptor, lysosomal-associated membrane protein 1 (LAMP1), to trigger virus fusion. This process occurs across multiple pH-dependent steps, but the molecular events remain largely unknown.

View Article and Find Full Text PDF

Ion toxicity in waterlogged soils: mechanisms of root response and adaptive strategies.

Front Plant Sci

August 2025

State Key Laboratory of Nutrient Use and Management, National Agricultural Experimental Station for Soil Quality, Jinan, China, Key Laboratory of Agro-Environment of Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Shandong Academy

Waterlogging poses a significant global threat to agriculture by inducing ion toxicities (e.g. Fe², Mn², NH ) in roots due to soil redox changes.

View Article and Find Full Text PDF

Oxidative stress, driven by excess reactive oxygen species (ROS), is a key factor in the progression of neurodegenerative diseases like Alzheimer's disease (AD). In this context, copper dysregulation can also contribute to this imbalance, being responsible for enhanced ROS production, so that copper scavenging has been investigated as a possible therapeutic strategy. This study investigates the behavior of two isostructural ligands, featuring an NO donor set, that effectively chelate Cu(II) in aqueous solution.

View Article and Find Full Text PDF

Sequential protease deployment under acidic conditions degrades host defense proteins and drives Valsa mali pathogenicity in apple.

Plant Physiol

August 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.

Apple Valsa canker, caused by the ascomycete fungus Valsa mali, is a severe disease threatening apple (Malus domestica) production, particularly in East Asia. The pH at the infection site decreases from 6.0 to around 3.

View Article and Find Full Text PDF