Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human activities have caused a near-ubiquitous and evolutionarily-unprecedented increase in environmental sound levels and artificial night lighting. These stimuli reorganize communities by interfering with species-specific perception of time-cues, habitat features, and auditory and visual signals. Rapid evolutionary changes could occur in response to light and noise, given their magnitude, geographical extent, and degree to which they represent unprecedented environmental conditions. We present a framework for investigating anthropogenic light and noise as agents of selection, and as drivers of other evolutionary processes, to influence a range of behavioral and physiological traits such as phenological characters and sensory and signaling systems. In this context, opportunities abound for understanding contemporary and rapid evolution in response to human-caused environmental change.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tree.2015.06.009DOI Listing

Publication Analysis

Top Keywords

anthropogenic light
8
light noise
8
framework assess
4
assess evolutionary
4
evolutionary responses
4
responses anthropogenic
4
light sound
4
sound human
4
human activities
4
activities caused
4

Similar Publications

Understanding seagrass dynamics is crucial for the effective management and conservation of seagrass meadows. However, such information remains limited for many regions worldwide, including Kuta Mandalika on Lombok Island, Indonesia. This rapidly developing coastal area, which is home to both tourism infrastructure and an international race circuit, hosts extensive seagrass meadows whose condition and dynamics require careful assessment.

View Article and Find Full Text PDF

Making Restoration Effective for Dynamic Coastal Wetlands.

Glob Chang Biol

September 2025

Elkhorn Slough National Estuarine Research Reserve, Watsonville, California, USA.

To halt and reverse the trends of ecosystem loss and degradation under global change, nations globally are promoting ecosystem restoration. Restoration is particularly crucial to coastal wetlands (including tidal marshes, mangrove forests, and tidal flats), which are among the most important ecosystems on Earth but have been severely depleted and degraded. In this review, we explore the question of how to make restoration more effective for coastal wetlands in light of the often-overlooked dynamic nature of these transitional ecosystems between land and ocean.

View Article and Find Full Text PDF

Mediterranean ecosystems have been grazed by livestock for thousands of years. While considered both a major anthropogenic stressor and a potential habitat conservation tool, the effects of livestock grazing on vertebrate populations remain poorly understood. Our study focused on goat and sheep grazing on a large island off the coast of Greece in order to shed light on (1) the nature of the relationship between livestock grazing and vertebrate assemblages, and (2) the mediating mechanisms.

View Article and Find Full Text PDF

The influence of artificial light at night on algal phenol concentrations can mediate herbivore-algal interactions.

Proc Biol Sci

September 2025

Instituto One Health, Centro de Investigación Marina de Quintay (CIMARQ), Programa de Doctorado en Medicina de la Conservación, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.

Artificial light at night (ALAN) is a growing anthropogenic stressor affecting all biological levels of complexity. Despite this, only a few studies have measured its influence on photosynthetic organisms, and even fewer its effects on macroalgae and their interaction with herbivores. Of particular interest is the potential influence of ALAN on secondary metabolites, such as phenolic compounds, that are used by macroalgae to deter herbivores.

View Article and Find Full Text PDF

The Arctic tundra biome is undergoing rapid shrub expansion ('shrubification') in response to anthropogenic climate change. During the previous ~2.6 million years, glacial cycles caused substantial shifts in Arctic vegetation, leading to changes in species' distributions, abundance and connectivity, which have left lasting impacts on the genetic structure of modern populations.

View Article and Find Full Text PDF