Colorimetric detection of both total genomic and loci-specific DNA methylation from limited DNA inputs.

Clin Epigenetics

Centre for Personalized NanoMedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland Australia ; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland Australia.

Published: July 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Aberrant DNA methylation marks are potential disease biomarkers, and detecting both total genomic and gene-specific DNA methylation can aid in clinical decisions. While a plethora of methods exist in research, simpler, more convenient alternatives are needed to enhance both routine diagnostics and research.

Results: Herein, we describe colorimetric assays using methyl-binding domain (MBD) proteins for rapid and convenient evaluation of total genomic and gene-specific methylation from 50 ng or less DNA input in under 2 h. As little as 5 % methylation differences can be detected and are enhanced by a novel MBD protocol for improved specificity. Our assays could differentiate naïve from de-methylating drug-treated cells and detect the presence of a methylated prostate cancer biomarker in the urine. Finally, the assay was evolved onto disposable screen-printed electrodes for convenient detection of gene-specific methylation in urine.

Conclusions: Rapid MBD-based colorimetric and electrochemical approaches to detect DNA methylation from limited samples were successfully demonstrated and applied to clinical samples. We envision that the ease, low sample requirements and speed of these assays could have both clinical and research-wide applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498563PMC
http://dx.doi.org/10.1186/s13148-015-0100-6DOI Listing

Publication Analysis

Top Keywords

dna methylation
16
total genomic
12
methylation limited
8
genomic gene-specific
8
gene-specific methylation
8
methylation
7
dna
6
colorimetric detection
4
detection total
4
genomic loci-specific
4

Similar Publications

Oncometabolites are aberrant metabolic byproducts that arise from mutations in enzymes of the tricarboxylic acid (TCA) cycle or related metabolic pathways and play central roles in tumor progression and immune evasion. Among these, 2-hydroxyglutarate (2-HG), succinate, and fumarate are the most well-characterized, acting as competitive inhibitors of α-ketoglutarate-dependent dioxygenases to alter DNA and histone methylation, cellular differentiation, and hypoxia signaling. More recently, itaconate, an immunometabolite predominantly produced by activated macrophages, has been recognized for its dual roles in modulating inflammation and tumor immunity.

View Article and Find Full Text PDF

The impact of melatonin-enriched media on epigenetic and perinatal changes induced by embryo culture in a mouse model.

J Assist Reprod Genet

September 2025

Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.

Purpose: To determine if melatonin-enriched culture media could offset loss of imprinting in mouse concepti.

Methods: Zygotes were cultured to blastocyst stage under optimized conditions in melatonin-supplemented media at either 10 M (MT 10) or 10 M (MT 10), or without supplementation (Culture + embryo transfer, or ET, positive control). Blastocysts were also developed in vivo (ET negative control).

View Article and Find Full Text PDF

Aberrant DNA methylation has been described in nearly all human cancers, yet its interplay with genomic alterations during tumor evolution is poorly understood. To explore this, we performed reduced representation bisulfite sequencing on 217 tumor and matched normal regions from 59 patients with non-small cell lung cancer from the TRACERx study to deconvolve tumor methylation. We developed two metrics for integrative evolutionary analysis with DNA and RNA sequencing data.

View Article and Find Full Text PDF

Cancer development and response to treatment are evolutionary processes, but characterizing evolutionary dynamics at a clinically meaningful scale has remained challenging. Here we develop a new methodology called EVOFLUx, based on natural DNA methylation barcodes fluctuating over time, that quantitatively infers evolutionary dynamics using only a bulk tumour methylation profile as input. We apply EVOFLUx to 1,976 well-characterized lymphoid cancer samples spanning a broad spectrum of diseases and show that initial tumour growth rate, malignancy age and epimutation rates vary by orders of magnitude across disease types.

View Article and Find Full Text PDF

Forensic applications of compound genetic markers: trends and future directions.

Sci Justice

September 2025

School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Westville, Durban 4000, South Africa. Electronic address:

A compound marker integrates two or more genetic markers into a single assay. The application of compound markers enhances the predictive accuracy of genetic testing by leveraging the strengths of different genetic variations while mitigating the limitations of individual markers. Compound markers include SNP-SNPs, SNP-STRs, DIP-SNPs, DIP-STRs, Multi-In/Dels, CpG-SNPs, CpG-STRs/CpG-In/Del, and Methylation-Microhaplotypes.

View Article and Find Full Text PDF