98%
921
2 minutes
20
Experimental and computational folding studies of Proteins L & G and NuG2 typically find that sequence differences determine which of the two hairpins is formed in the transition state ensemble (TSE). However, our recent work on Protein L finds that its TSE contains both hairpins, compelling a reassessment of the influence of sequence on the folding behavior of the other two homologs. We characterize the TSEs for Protein G and NuG2b, a triple mutant of NuG2, using ψ analysis, a method for identifying contacts in the TSE. All three homologs are found to share a common and near-native TSE topology with interactions between all four strands. However, the helical content varies in the TSE, being largely absent in Proteins G & L but partially present in NuG2b. The variability likely arises from competing propensities for the formation of nonnative β turns in the naturally occurring proteins, as observed in our TerItFix folding algorithm. All-atom folding simulations of NuG2b recapitulate the observed TSEs with four strands for 5 of 27 transition paths [Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) Science 334(6055):517-520]. Our data support the view that homologous proteins have similar folding mechanisms, even when nonnative interactions are present in the transition state. These findings emphasize the ongoing challenge of accurately characterizing and predicting TSEs, even for relatively simple proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500205 | PMC |
http://dx.doi.org/10.1073/pnas.1503613112 | DOI Listing |
Sci Adv
September 2025
Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.
Cotranslational protein folding follows a distinct pathway shaped by the vectorial emergence of the peptide and spatial constraints of the ribosome exit tunnel. Variations in translation rhythm can cause misfolding linked to disease; however, predicting cotranslational folding pathways remains challenging. Here, we computationally predict and experimentally validate a vectorial hierarchy of folding resolved at the atomistic level, where early intermediates are stabilized through non-native hydrophobic interactions before rearranging into the native-like fold.
View Article and Find Full Text PDFBiochemistry
September 2025
BRIC-National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India.
The expression system is the method of choice to obtain high yields of a pure protein. Since most biological pathways are evolutionarily conserved from bacteria to mammals, there is always a chance that a non-native protein shares sequence or structural homology with the natural substrate of an enzyme. In such cases, when this foreign protein is overexpressed in , it may be processed as a substrate by that enzyme, resulting in its modification.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States.
The accurate simulation of realistic biomembranes is a long-term goal in the field of membrane biophysics. Efforts to simulate increasingly complex lipid bilayers, consisting of multiple lipid types and proteins, have been hindered by the shortcomings of current force fields, both coarse-grained and all-atom, in the modeling of protein-protein and protein-lipid interactions. Due to the fundamental importance of protein dimerization to cellular signaling and protein trafficking, the study of protein-protein association and the related dimerization free energies has received significant attention in both simulations and experiments.
View Article and Find Full Text PDFJ Anim Ecol
August 2025
Community Ecology, Plant-Animal Interactions, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.
Below-ground food webs in grasslands are affected by both above-ground herbivory and invasive plant species. However, the combined effects of these factors on soil organisms and their interactions with plant communities remain poorly understood. We investigated how the invasive African lovegrass (ALG) influenced below-ground food webs in south-eastern Australian grasslands under different herbivory regimes.
View Article and Find Full Text PDFMethods Mol Biol
August 2025
Department of Clinical Science, Host Pathogen Interaction Group, Section of Ruminant Medicine, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
As a naturally occurring bovine pathogen, bovine respiratory syncytial virus (BRSV) engages with the innate and adaptive immune responses of cattle in an evolutionarily meaningful fashion. Therefore, studying viruses in their native hosts, rather than in non-native hosts, is more likely to authentically reflect the pathogenesis of natural infection. Experimental infection of calves with BRSV provides an important tool for investigating mechanisms of pathogenesis and immunity to RSV infection, and can also be used for evaluating new strategies for the prevention and treatment of RSV infection in both cattle and man.
View Article and Find Full Text PDF