Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Marine biological invasions have increased with the development of global trading, causing the homogenization of communities and the decline of biodiversity. A main vector is ballast water exchange from shipping. This study evaluates the use of ecological niche modelling (ENM) to predict the spread of 18 non-indigenous species (NIS) along shipping routes and their potential habitat suitability (hot/cold spots) in the Baltic Sea and Northeast Atlantic. Results show that, contrary to current risk assessment methods, temperature and sea ice concentration determine habitat suitability for 61% of species, rather than salinity (11%). We show high habitat suitability for NIS in the Skagerrak and Kattegat, a transitional area for NIS entering or leaving the Baltic Sea. As many cases of NIS introduction in the marine environment are associated with shipping pathways, we explore how ENM can be used to provide valuable information on the potential spread of NIS for ballast water risk assessment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2015.04.033DOI Listing

Publication Analysis

Top Keywords

habitat suitability
12
ecological niche
8
niche modelling
8
non-indigenous species
8
ballast water
8
baltic sea
8
risk assessment
8
nis
5
evaluating potential
4
potential ecological
4

Similar Publications

The biting midges, Culicoides peregrinus Kieffer and Culicoides oxystoma Kieffer (Diptera: Ceratopogonidae) are the most significant vector species of bluetongue virus (BTV) in the Oriental region, including India. Rearing of these vector species was cumbersome; previous researchers supplemented the rearing substrates primarily with cattle dung (the habitat), yeast and nutrient broth. Other investigations reiterated that an enriched milieu of live bacteria is required for the oviposition and developmental progression of the immatures as they failed to develop in sterile medium.

View Article and Find Full Text PDF

Understanding the spatial distribution of rare species is fundamental to biodiversity conservation. The black-necked crane (), a flagship species of alpine wetlands and a first-class nationally protected species in China, serves as an important indicator for ecosystem health. Based on the had data and ecological environment data, this study used the Maximum Entropy model (MaxEnt) and Random Forest model (RF) to predict the suitable distribution area of the black-necked crane.

View Article and Find Full Text PDF

Objective: To explore healthcare professionals' perceptions on the implementation of home hemodialysis and self-assisted hemodialysis in Singapore and to identify the perceived barriers, facilitators, and actionable strategies for increasing uptake.

Methods: This is a qualitative explorative study based on semi-structured face-to-face interviews conducted with a multidisciplinary group of 12 healthcare professionals at an acute teaching hospital in Singapore. Thematic analysis was used for data analysis.

View Article and Find Full Text PDF

Integrating the thermal dependence of sex ratio into distribution models to predict suitable habitats for the invasive freshwater pond slider turtle, .

Mar Life Sci Technol

August 2025

Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China.

Unlabelled: Biological invasions represent one of the main anthropogenic drivers of global change with a substantial impact on biodiversity. Traditional studies predict invasion risk based on the correlation between species' distribution and environmental factors, with little attention to the potential contribution of physiological factors. In this study, we incorporated temperature-dependent sex determination (TSD) and sex-ratio data into species distribution models (SDMs) to assess the current and future suitable habitats for the world's worst invasive reptile species, the pond slider turtle ().

View Article and Find Full Text PDF

The king cobra (), the world's largest venomous snake, is a vulnerable species with an expanding distribution in Nepal. This study modeled its current climatically suitable habitat and predicted future changes (2050 and 2070) under the SSP2-4.5 climate change scenario.

View Article and Find Full Text PDF