98%
921
2 minutes
20
Background: Although the incidence of acute death related to coronary artery disease has decreased with the advent of new interventional therapies, myocardial infarction remains one of the leading causes of death in the US. Current animal models developed to replicate this phenomenon have been associated with unacceptably high morbidity and mortality. A new model utilizing the first diagonal branch of the left anterior descending artery (D1-LAD) was developed to provide a clinically relevant lesion, while attempting to minimize the incidence of adverse complications associated with infarct creation.
Methods: Eight Yucatan miniature pigs underwent percutaneous embolization of the D1-LAD via injection of 90 µm polystyrene micro-spheres. Cardiac structure and function were monitored at baseline, immediately post-operatively, and at 8-weeks post-infarct using transthoracic echocardiography. Post-mortem histopathology and biochemical analyses were performed to evaluate for changes in myocardial structure and extracellular matrix (ECM) composition respectively. Echocardiographic data were evaluated using a repeated measures analysis of variance followed by Tukey's HSD post hoc test. Biochemical analyses of infarcted to non-infarcted myocardium were compared using analysis of variance.
Results: All eight pigs successfully underwent echocardiography prior to catheterization. Overall procedural survival rate was 83% (5/6) with one pig excluded due to failure of infarction and another due to deviation from protocol. Ejection fraction significantly decreased from 69.7 ± 7.8% prior to infarction to 50.6 ± 14.7% immediately post-infarction, and progressed to 48.7 ± 8.9% after 8-weeks (p = 0.011). Left ventricular diameter in systole significantly increased from 22.6 ± 3.8 mm pre-operatively to 30.9 ± 5.0 mm at 8 weeks (p = 0.016). Histopathology showed the presence of disorganized fibrosis on hematoxylin and eosin and Picro Sirius red stains. Collagen I and sulfated glycosaminoglycan content were significantly greater in the infarcted region than in normal myocardium (p = 0.007 and p = 0.018, respectively); however, pyridinoline crosslink content per collagen I content in the infarcted region was significantly less than normal myocardium (p = 0.048).
Conclusion: Systolic dysfunction and changes in ECM composition induced via embolization of the D1-LAD closely mimic those found in individuals with chronic myocardial infarction (MI), and represents a location visible without the need for anesthesia. As a result, this method represents a useful model for studying chronic MI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634919 | PMC |
http://dx.doi.org/10.1186/s12967-015-0547-4 | DOI Listing |
Mol Biol Rep
September 2025
Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.
Regenerative cardiology has emerged as a novel strategy to improve cardiac healing following ischemic injury. While stem-cell-mediated cardiac regeneration has garnered much attention as a promising strategy, its value remains debated owing to the lack of ideal stem cell source candidates. Resident/endogenous cardiac-derived stromal cells (CSCs) exhibit superior therapeutic potential due to their innate abilities to differentiate into cardiac cells, especially cardiomyocytes (CM).
View Article and Find Full Text PDFClin Res Cardiol
September 2025
Department of Cardiology, University Heart Center, University Hospital Zurich, Center for Translational and Experimental Cardiology (CTEC), University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
Background: Diabetic patients with ST-segment elevation myocardial infarction (STEMI) are at an increased risk of cardiovascular events as compared to non-diabetic patients. This analysis investigated outcomes of diabetic patients presenting with multivessel disease (MVD) and STEMI in a contemporary trial and the relevance of an immediate versus staged multivessel PCI strategy in this high-risk population.
Methods: Patients enrolled in the MULTISTARS AMI trial were stratified according to the presence/absence of diabetes.
Herz
September 2025
Department of Cardiology, The Third Clinical College of Wenzhou Medical University, 326000, Wenzhou, Zhejiang, China.
Background: The protective function of the tetrandrine (TET)-mediated transient receptor potential vanilloid 2 (TRPV2) channel in myocardial ischemia/reperfusion injury (MI/RI) has been established in numerous investigations. The objective of the current study was to explain how TRPV2 further modulates downstream factors to influence the progression of MI/RI.
Methods: To this end, an MI/RI model in rats and a hypoxia-reoxygenation (H/R) cell model in H9c2 cells were constructed.
JACC Case Rep
July 2025
Department of Emergency Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA; Texas Emergency Medicine Research Center, Houston, Texas, USA.
Background: The timely transfer of patients with ST-segment elevation myocardial infarction (STEMI) to percutaneous coronary intervention-capable centers is critical for improving outcomes. Although the American Heart Association recommends a door-in-door-out (DIDO) time of ≤30 minutes, national compliance remains low.
Project Rationale: At Harris Health, no patients with STEMI met this benchmark before 2022.
Kardiologiia
September 2025
Department of Cardiology, The Ninth Medical Center, Chinese PLA General Hospital.
Background Hyperuricemia (HUA) frequently coexists with coronary artery disease (CAD) and is linked to adverse cardiovascular outcomes. The long-term impact of urate-lowering therapy (ULT) on clinical outcomes, including all-cause mortality and major adverse cardiovascular events (MACEs), in CAD patients after percutaneous coronary intervention (PCI) has not been determined. That was the aim of this study.
View Article and Find Full Text PDF