Gender-Specific Differences in Skeletal Muscle 11β-HSD1 Expression Across Healthy Aging.

J Clin Endocrinol Metab

Centre for Endocrinology, Diabetes, and Metabolism (Z.K.H.-S., S.A.M., B.H., A.E.T., G.G.L.), School of Clinical and Experimental Medicine, Institute for Biomedical Research, University of Birmingham, Edgbaston B15 2TT, United Kingdom; Department of Endocrinology (M.S.), Adelaide and Meath Hospital,

Published: July 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Context: Cushing's syndrome is characterized by marked changes in body composition (sarcopenia, obesity, and osteoporosis) that have similarities with those seen in aging. 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) converts glucocorticoids to their active form (cortisone to cortisol in humans), resulting in local tissue amplification of effect.

Objective: To evaluate 11β-HSD1 expression and activity with age, specifically in muscle. To determine putative causes for increased activity with age and its consequences upon phenotypic markers of adverse aging.

Design: Cross-sectional observational study.

Setting: National Institute for Health Research-Wellcome Trust Clinical Research Facility, Birmingham, United Kingdom.

Patients Or Other Participants: Healthy human volunteers age 20 to 81 years (n = 134; 77 women, 57 men).

Interventions: Day attendance at research facility for baseline observations, body composition analysis by dual-energy x-ray absorptiometry, jump-plate mechanography, grip strength analysis, baseline biochemical profiling, urine collection, and vastus lateralis muscle biopsy.

Main Outcome Measure(s): Skeletal muscle gene expression, urine steroid profile, bivariate correlations between expression/activity and phenotypic/biochemical variables.

Results: Skeletal muscle 11β-HSD1 expression was increased 2.72-fold in women over 60 years of age compared to those aged 20-40 years; no differences were observed in men. There was a significant positive correlation between skeletal muscle 11β-HSD1 expression and age in women across the group (rho = 0.40; P = .009). No differences in expression of 11β-HSD type 2, glucocorticoid receptor, or hexose-6-phosphate dehydrogenase between age groups were observed in either sex. Urinary steroid markers of 11β-HSD1, 11β-HSD type 2, or 5α-reductase were similar between age groups. Skeletal muscle 11β-HSD1 expression was associated with reduced grip strength in both sexes and correlated positively with percentage of body fat, homeostasis model of assessment for insulin resistance, total cholesterol, LH, and FSH and negatively with bone mineral content and IGF-1 in women.

Conclusions: Skeletal muscle 11β-HSD1 is up-regulated with age in women and is associated with reduced grip strength, insulin resistance, and an adverse body composition profile. Selective inhibition of 11β-HSD1 may offer a novel strategy to prevent and/or reverse age-related sarcopenia.

Download full-text PDF

Source
http://dx.doi.org/10.1210/jc.2015-1516DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
24
muscle 11β-hsd1
20
11β-hsd1 expression
20
body composition
12
grip strength
12
11β-hsd1
9
muscle
8
age
8
activity age
8
age women
8

Similar Publications

Background: This study aimed to investigate the gender-specific associations of skeletal muscle mass and fat mass with non-alcoholic fatty liver disease (NAFLD) and NAFLD-related liver fibrosis in two population-based studies.

Methods: Analyses were based on data from the MEGA (n = 238) and the MEIA study (n = 594) conducted between 2018 and 2023 in Augsburg, Germany. Bioelectrical impedance analysis was used to evaluate relative skeletal muscle mass (rSM) and SM index (SMI) as well as relative fat mass (rFM) and FM index (FMI); furthermore, the fat-to-muscle ratio was built.

View Article and Find Full Text PDF

X-Linked Hypophosphatemia: Role of Fibroblast Growth Factor 23 on Human Skeletal Muscle-Derived Cells.

Calcif Tissue Int

September 2025

FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141, Florence, Italy.

X-linked hypophosphatemia (XLH) is a rare and progressive disease, due to inactivating mutations in the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene. These pathogenic variants result in elevated circulating levels of fibroblast growth factor 23 (FGF23), responsible for the main clinical manifestations of XLH, such as hypophosphatemia, skeletal deformities, and mineralization defects. However, XLH also involves muscular disorders (muscle weakness, pain, reduced muscle density, peak strength, and power).

View Article and Find Full Text PDF

Introduction: medial patellofemoral ligament (MPFL) reconstruction using an autologous quadriceps tendon graft to treat patellofemoral dislocation in the pediatric population is a surgical alternative that may offer advantages compared to other types of grafts. We assessed clinical and functional outcomes, rate of return to sport, and complications in a cohort of pediatric patients.

Material And Methods: retrospective and descriptive cohort study.

View Article and Find Full Text PDF

Comment on "Low skeletal muscle mass and not systemic inflammation is associated with complications after free forearm flap reconstruction in oral cancer patients".

Oral Oncol

September 2025

Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India. Electronic address:

View Article and Find Full Text PDF

Electrical pulse generator for electroporation induction in myocytes: Compared effects on skeletal and cardiac cells.

Med Eng Phys

October 2025

Departament of Electronics and Biomedical Engineering, School of Electrical and Computer Engineering (DEEB/FEEC), University of Campinas (UNICAMP), Campinas, SP, Brazil; National Laboratory for Study of Cell Calcium (LabNECC), Center for Biomedical Engineering (CEB), UNICAMP, Campinas, SP, Brazil.

High-intensity, external electric fields (HIEF) have been used in research and therapy for abnormal generation/propagation of the cardiac electrical activity (e.g., defibrillation), and for promoting access of membrane-impermeant molecules into the cytosol through electropores.

View Article and Find Full Text PDF