Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Lassa virus is a notorious human pathogen that infects many thousands of people each year in West Africa, causing severe viral hemorrhagic fevers and significant mortality. The surface glycoprotein of Lassa virus mediates receptor recognition through its GP1 subunit. Here we report the crystal structure of GP1 from Lassa virus, which is the first representative GP1 structure for Old World arenaviruses. We identify a unique triad of histidines that forms a binding site for LAMP1, a known lysosomal protein recently discovered to be a critical receptor for internalized Lassa virus at acidic pH. We demonstrate that mutation of this histidine triad, which is highly conserved among Old World arenaviruses, impairs LAMP1 recognition. Our biochemical and structural data further suggest that GP1 from Lassa virus may undergo irreversible conformational changes that could serve as an immunological decoy mechanism. Together with a variable region that we identify on the surface of GP1, those could be two distinct mechanisms that Lassa virus utilizes to avoid antibody-based immune response.

Importance: Structural data at atomic resolution for viral proteins is key for understanding their function at the molecular level and can facilitate novel avenues for combating viral infections. Here we used X-ray protein crystallography to decipher the crystal structure of the receptor-binding domain (GP1) from Lassa virus. This is a pathogenic virus that causes significant illness and mortality in West Africa. This structure reveals the overall architecture of GP1 domains from the group of viruses known as the Old World arenaviruses. Using this structural information, we elucidated the mechanisms for pH switch and binding of Lassa virus to LAMP1, a recently identified host receptor that is critical for successful infection. Lastly, our structural analysis suggests two novel immune evasion mechanisms that Lassa virus may utilize to escape antibody-based immune response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505663PMC
http://dx.doi.org/10.1128/JVI.00651-15DOI Listing

Publication Analysis

Top Keywords

lassa virus
40
gp1 lassa
12
virus
11
lassa
10
lamp1 recognition
8
west africa
8
crystal structure
8
structural data
8
mechanisms lassa
8
antibody-based immune
8

Similar Publications

pH-induced conformational changes and inhibition of the Lassa virus spike complex.

Cell Host Microbe

August 2025

Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel. Electronic address:

Lassa virus (LASV) is a devastating human pathogen with no vaccines and limited therapeutics. The LASV class-I spike complex engages target cells via binding its primary host receptor, matriglycan, followed by macropinocytosis and binding of its secondary receptor, lysosomal-associated membrane protein 1 (LAMP1), to trigger virus fusion. This process occurs across multiple pH-dependent steps, but the molecular events remain largely unknown.

View Article and Find Full Text PDF

Lassa virus (LASV) is circulating in rodents in several countries in West Africa and is the causative agent of the zoonotic disease Lassa fever. Several vaccine candidates have been successfully tested in preclinical and clinical research, while no LASV-specific vaccines or antiviral treatments have been licensed to date. Approximately 500,000 human cases of Lassa fever are estimated to occur every year.

View Article and Find Full Text PDF

Sin Nombre virus (SNV) is the main causative agent of hantavirus cardiopulmonary syndrome (HCPS) in North America. SNV is transmitted via environmental biological aerosols (bioaerosols) produced by infected deer mice (). It is similar to other viruses that have environmental transmission routes rather than a person-to-person transmission route, such as avian influenza (e.

View Article and Find Full Text PDF

Lassa virus causes a severe hemorrhagic disease referred to as Lassa fever. It exhibits a significant mortality rate among people in West and Central Africa. Currently, there is no vaccine available, and ribavirin is the sole treatment option with significant limitations.

View Article and Find Full Text PDF