98%
921
2 minutes
20
We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a "dip &pull" method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, "dip &pull" approach, with a "tender" X-ray synchrotron source (2 keV-7 keV), we are able to access the interface between liquid and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt(2+) and Pt(4+) interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of "tender" AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4650780 | PMC |
http://dx.doi.org/10.1038/srep09788 | DOI Listing |
J Am Chem Soc
September 2025
Institute of Materials, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
Localized corrosion in metallic materials is a stochastic phenomenon that causes irreversible structural failure. Its initiation, which occurs at the solid-liquid interface on the nanometer scale, remains difficult to predict and challenging to characterize. Herein, we describe an experimental platform that exploits advances in electrochemical liquid-phase scanning and transmission electron microscopy (LPSEM and LPTEM) to study pitting corrosion of thin-film pure aluminum in a saline environment in real time.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
State Key Laboratory of Hydro Science and Engineering, and Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China. Electronic address:
Hypothesis: On highly cleaned planar surfaces submerged in highly cleaned water, flat surface nanobubbles with an angle of attachment of ∼15 are observed - never on engineering surfaces submerged in plain water, though here unidentified cavitation nuclei are always present and cause low tensile strength.
Experiments: In the present study, surface nanobubbles are generated by standard experimental techniques on a polished steel surface, and we find that the shape and the angles of attachment of the bubbles are influenced by the local substrate topography. These observations align with the theory of non-adsorbed liquid zones, which explains a surface nanobubble as a bubble with a skin of contamination molecules, which bond along the bubble rim at a contact angle of ∼14.
ACS Nano
September 2025
Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
Mechanical stimuli have been shown to dynamically alter solid-liquid interfaces and induce electron transfer, enabling catalytic reactions, most notably contact-electro-catalysis (CEC). However, the underlying mechanism of charge transfer at solid-liquid interfaces under mechanical stimulation remains unclear, particularly at semiconductor-liquid interfaces. To date, rare studies have reported on the catalytic activity of semiconductor-liquid interfaces under mechanical stimulation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Surface Science Laboratory, Department of Materials and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
The performance of NiO-based electrocatalysts for the oxygen evolution reaction (OER) is strongly influenced by the interface between the metal support (current collector) and the catalyst layer, which modulates electronic properties and electrochemical activity. This study systematically investigates the solid-solid interface behavior of NiO thin films prepared by reactive magnetron sputtering on Pt, Au, and Ni, followed by electrochemical characterization. Stepwise NiO deposition and X-ray photoelectron spectroscopy reveal distinct band alignment and electronic structure differences at the metal-catalyst interface.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China. Electronic address:
Solid-liquid triboelectric nanogenerators (SL-TENGs) have attracted attention for use in water resource collection. However, traditional methods limit improvements in the surface energy density of the friction layer because of insufficient precision. This study used femtosecond laser technology to create three-dimensional bionic structures on polyvinylidene fluoride (PVDF) films.
View Article and Find Full Text PDF