Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Three Cu(I) coordination networks, namely, {[Cu2(bpz)2(CN)X]·CH3CN}n, (X = Cl, 1; I, 3), {[Cu6(bpz)6(CH3CN)3(CN)3Br]·2OH·14CH3CN}n, (2, bpz = 3,3',5,5'-tetramethyl-4,4'-bipyrazole), were prepared by using solvothermal method. The cyanide ligands in these networks were generated in situ by cleavage of C-C bond of MeCN under solvothermal condition. The structures of these networks are dependent on halogen anions. Complex 1 is a ladderlike structure with μ2-CN(-) as rung and μ2-bpz as armrest. The Cl(-) in 1 is at terminal position but does not extend the one-dimensional (1D) ladder to higher dimensionalities. Complex 2 is a three-dimensional (3D) framework comprised of novel planar [Cu3Br] triangle and single Cu nodes, which are extended by μ2-bpz and μ2-CN(-) to form a novel (3,9)-connected gfy network. Density functional theory calculations showed that single-electron delocalization of Br atom induces the plane structure of [Cu3Br]. Complex 3 also possesses a similar ladderlike subunit as in 1, but the I(-) acts as bidentate bridge to extend the ladder to 3D framework with a four-connected sra topology. The three networks show notable catalytic activity on the click reaction. The compared catalytic results demonstrate that complex 2 possesses the best catalysis performance among three complexes, which is ascribed to the largest solvent-accessible void (porosity: 2 (29.4%) > 1 (25.7%) > 3 (17.6%)) and the more Cu(I) active sites in 2. The present combined structure-property studies provide not only a new synthetic route to obtain a new kind of catalyst for click reaction but also the new insights on catalyst structure-function relationships.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.5b00110 | DOI Listing |