Characterization of the three-dimensional kinematic behavior of axons in central nervous system white matter.

Biomech Model Mechanobiol

Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA.

Published: November 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Traumatic injury to axons in white matter of the brain and spinal cord occurs primarily via tensile stretch. During injury, the stress and strain experienced at the tissue level is transferred to the microscopic axons. How this transfer occurs, and the primary constituents dictating this transfer must be better understood to develop more accurate multi-scale models of injury. Previous studies have characterized axon tortuosity and kinematic behavior in 2-dimensions (2-D), where axons have been modeled to exhibit non-affine (discrete), affine (composite-like), or switching behavior. In this study, we characterize axon tortuosity and model axon kinematic behavior in 3-dimensions (3-D). Embryonic chick spinal cords at different development stages were excised and stretched. Cords were then fixed, transversely sectioned, stained, and imaged. 3-D axon tortuosity was measured from confocal images using a custom-built MATLAB script. 2-D kinematic models previously described in Bain et al. (J Biomech Eng 125(6):798, 2003) were extended, re-derived, and validated for the 3-D case. Results showed that 3-D tortuosity decreased with stretch, exhibiting similar trends with changes in development as observed in the 2-D studies. Kinematic parameters also displayed similar general trends. Axons demonstrated more affine behavior with increasing stretch and development. In comparison with 2-D results, a smaller percentage of the populations of 3-D axons were predicted to follow pure non-affine behavior. The data and kinematic models presented herein can be incorporated into multi-scale CNS injury models, which can advance the accuracy of the models and improve the potential to identify axonal injury thresholds.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10237-015-0675-zDOI Listing

Publication Analysis

Top Keywords

kinematic behavior
12
axon tortuosity
12
white matter
8
kinematic models
8
kinematic
6
behavior
6
axons
6
injury
5
models
5
3-d
5

Similar Publications

Background: Assessing human movement is essential for diagnosing and monitoring movement-related conditions like neuromuscular disorders. Timed function tests (TFTs) are among the most widespread types of assessments due to their speed and simplicity, but they cannot capture disease-specific movement patterns. Conversely, biomechanical analysis can produce sensitive disease-specific biomarkers, but it is traditionally confined to laboratory settings.

View Article and Find Full Text PDF

Study of a near-cortical over-drilling technique on plate constructs with a conical locking system in a rabbit femoral fracture using a finite element model.

Med Eng Phys

October 2025

Centre for Simulation in Bioengineering, Biomechanics and Biomaterials (CS3B), Department of Mechanical Engineering, School of Engineering of Bauru, São Paulo State University (UNESP), Bauru, São Paulo, Brazil. Electronic address:

This study aimed to evaluate the near-cortical over-drilling technique on the mechanical behaviour of bone-plate constructs in a rabbit transverse femoral fracture. In vitro biomechanical testing and finite element (FE) models were used for analyses. Rabbits' bones (n = 14) were divided into two groups: G1 - without near-cortical over-drilling, and G2 - with near-cortical over-drilling.

View Article and Find Full Text PDF

A numerical investigation of the kinematic and fluid dynamic behaviour of an intramuscular autoinjector designed for optimising injection efficiency.

Med Eng Phys

October 2025

Department of Mechanical Engineering, University of Cape Town, 7701, South Africa; Centre for Research in Computational and Applied Mechanics (CERECAM), University of Cape Town, 7701, South Africa.

The usability and versatility of autoinjectors in managing chronic and autoimmune diseases have made them increasingly attractive in medicine. However, investigations into autoinjector designs require an understanding of the kinematic properties and fluid behaviour during injection. To optimise injection efficiency, this study develops a mathematical and computational fluid dynamics (CFD) model of an IM autoinjector by investigating the effects of viscosity, needle length, needle diameter, and medication volume on the injection process.

View Article and Find Full Text PDF

Insects and plants have been locked in an evolutionary arms race spanning 350 million years. Insects evolved specialized tools to cut into plant tissue, and plants, to counter these attacks, developed diverse defence strategies. Much previous worked has focused on chemical defences.

View Article and Find Full Text PDF

Sectionally nonlinearly functionally graded (SNFG) structures with triply periodic minimal surface (TPMS) are considered ideal for bone implants because they closely replicate the hierarchical, anisotropic, and porous architecture of natural bone. The smooth gradient in material distribution allows for optimal load transfer, reduced stress shielding, and enhanced bone ingrowth, while TPMS provides high mechanical strength-to-weight ratio and interconnected porosity for vascularization and tissue integration. Wherein, The SNFG structure contains sections with thickness that varies nonlinearly along their length in different patterns.

View Article and Find Full Text PDF