98%
921
2 minutes
20
The formation of hemozoin (malaria pigment) has been proposed as an ideal drug target for antimalarial screening programs. In this study, we used an improved, cost-effective and high-throughput spectrophotometric assay to screen plant extracts for finding novel antimalarial plant sources. Fifteen extracts with different polarity from three Iranian Artemisia species, A. ciniformis, A. biennis and A. turanica, were assessed for their antimalarial activity by in-vitro β-hematin formation assay. The most potent effect was observed in dichloromethane (DCM) extract of A. ciniformis with IC50 and IC90 values of 0.92 ± 0.01 and 1.29 ± 0.02 mg/mL, respectively. Ethyl acetate (EtOAC) extracts of A. biennis and A. turanica also showed significant antimalarial activities with IC50 values of 1.11 ± 0.02 and 1.35 ± 0.08 mg/mL and IC90 values of 1.22 ± 0.04 and 2.81 ± 0.21 mg/mL, respectively. Based on these results, it is possible to conclude that the components with strong antimalarial activity have been concentrated in the medium-polar extracts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403078 | PMC |
Int J Parasitol Drugs Drug Resist
August 2025
Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India. Electronic address:
Antimalarial resistance is a primary challenge in the treatment of malaria. The ongoing search for novel drug sources remains a critical strategy for addressing this issue. This study evaluated the blood stage antiplasmodial and cytotoxic activities of the crude extract and fractions obtained from Lepidobotrys staudtii.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
Department of Infectious Diseases, Third People's Hospital of Chengdu, Chengdu, China.
Rationale: Japanese spotted fever (JSF) is a rare tick-borne disease caused by Rickettsia japonica. Atypical manifestations and a lack of standardized diagnostic assays often result in delayed diagnosis and treatment, potentially leading to life-threatening complications.
Patient Concerns: A 57-year-old immunocompetent female from a region with no previously reported JSF cases presented with acute-onset high-grade fever (39.
ACS Infect Dis
September 2025
Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States.
Malaria treatments are compromised by drug resistance, creating an urgent need to discover new drugs. We used a phenotypic high-throughput screening (HTS) platform to identify new antimalarials, uncovering three related pyrrole-, indole-, and indoline-based series with a shared α-azacyclic acetamide core. These compounds showed fast-killing activity on asexual blood-stage parasites, were not cytotoxic, and disrupted parasite intracellular pH and Na regulation similarly to cipargamin (KAE609), a clinically advanced inhibitor of the Na pump (ATP4).
View Article and Find Full Text PDFJ Med Chem
September 2025
Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
New treatment strategies are required to combat the spread of drug-resistant malaria. The synthesis and preclinical evaluation of novel 3-hydroxy-propanamidines (HPAs), with modifications of the phenanthrene and the 4-fluorobenzamidine moieties, has yielded several analogs exhibiting excellent in vitro growth inhibition of drug-sensitive or resistant fresh clinical isolates and culture-adapted strains. No cytotoxicity in the human HepG2 cell line was observed, demonstrating notable parasite selectivity.
View Article and Find Full Text PDFChem Biodivers
September 2025
Institute of Chemistry, Federal University of Catalão, Catalão, Brazil.
Strategies have been employed to address antimalarial drug resistance, including the exploration of new therapeutic targets. In this study, the stem bark of Dalbergia miscolobium was investigated using in vitro assays against Plasmodium falciparum and pyruvate kinase II (PyrKII), an essential enzyme for parasite development. Compounds were dereplicated from ethanolic extract (IC = 9 µg/mL) using LC-HRMS, revealing active constituents: procyanidin A1 (2), biochanin (5) and formononetin (7).
View Article and Find Full Text PDF