Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Poly(ADP-ribose) polymerase 3 (PARP3) is a member of the PARP family enzymes which catalyze the ADP-ribosylation of proteins. PARP3 plays an important role in DNA damage repair and mitotic progression. In this study, we identified, using mass spectrometric techniques, two novel post-translational modification sites in PARP3, α-N-methylation and phosphorylation of serine 461 (S461). We found that the N-terminal α-amino group of PARP3 is heavily methylated in human cells, and N-terminal RCC1 methyltransferase (NRMT) is a key enzyme required for this methylation. We also observed that the phosphorylation level of S461 in PARP3 could be reduced in human cells upon treatment with flavopiridol, a cyclin-dependent kinase inhibitor. Moreover, we demonstrated that S461 phosphorylation, but not α-N-methylation of PARP3, may be involved in the cellular response toward DNA double-strand breaks. These findings provide novel insights into the post-translational regulation of PARP3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703312PMC
http://dx.doi.org/10.1021/acs.jproteome.5b00126DOI Listing

Publication Analysis

Top Keywords

α-n-methylation phosphorylation
8
phosphorylation serine
8
serine 461
8
polyadp-ribose polymerase
8
human cells
8
parp3
7
identification functional
4
functional characterizations
4
characterizations n-terminal
4
n-terminal α-n-methylation
4

Similar Publications

Protein translation regulation is critical for cellular responses and development, yet how elongation stage disruptions shape these processes remains incompletely understood. Here, we identify a single amino acid substitution (P55Q) in the ribosomal protein RPL-36A of Caenorhabditis elegans that confers complete resistance to the elongation inhibitor cycloheximide (CHX). Heterozygous animals carrying both wild-type RPL-36A and RPL-36A(P55Q) develop normally but show intermediate CHX resistance, indicating a partial dominant effect.

View Article and Find Full Text PDF

The sarcomeric protein cardiac myosin binding protein-C (cMyBP-C) binds myosin on thick filaments and regulates cardiac myocyte contraction. Our lab has reported that permeabilized cardiac myocytes lacking cMyBP-C generate greater power and show disproportionately fast sarcomere shortening velocities at high loads. Also, high resolution X-ray diffraction of cardiac trabeculae found that myosin cross-bridges in the cMyBP-C zone are the most active during loaded contractions.

View Article and Find Full Text PDF

Advanced glycation end products (AGEs) and reactive intermediates, such as methylglyoxal, are formed during thermal processing of foods and have been implicated in the pathogenesis of a series of chronic inflammatory diseases. AGEs are thought to directly interact with the intestinal epithelium upon ingestion of thermally processed foods, but their effects on intestinal epithelial cells are poorly understood. This study investigated transcriptomic changes in human intestinal epithelial FHs 74 Int cells after exposure to AGE-modified human serum proteins (AGE-HS), S100A12, a known RAGE ligand, and unmodified human serum proteins (HS).

View Article and Find Full Text PDF

Hepatic ischaemia-reperfusion (IR) injury is a serious clinical issue, especially in patients with type 2 diabetes mellitus (T2DM). As mitochondria play a critical role in the regulation of IR-induced liver damage, mitochondria-targeted treatment is of the utmost significance for improving outcomes. The present study explored the mitoprotective role of combined ginsenoside-MC1 (GMC1) and irisin administration in diabetic rats with hepatic IR injury.

View Article and Find Full Text PDF

Purpose: We aimed to compare the effects of atelocollagen (AC) and individual growth factors on the expression of key molecular markers associated with tendon healing.

Methods: C2C12 myoblasts were cultured in Dulbecco's Modified Eagle Medium (DMEM) containing 5% fetal bovine serum (FBS) and treated with 1 nM or 10 nM of Atelocollagen (AC), bone morphogenetic protein-2 (BMP-2), transforming growth factor-beta 1 (TGF-β1), insulin-like growth factor-1 (IGF-1), or vascular endothelial growth factor (VEGF) for 5 days. After 5 days of treatment, cells were harvested from the culture medium, and Western blot analysis was performed to quantify the expression of phosphorylated extracellular signal-regulated kinase (p-ERK), Collagen type I (Col I), Collagen type Ⅲ (Col Ⅲ), and Tenascin C (TnC).

View Article and Find Full Text PDF