98%
921
2 minutes
20
We develop and characterize a UV ablation technique that can be used to pattern soft materials such as polymers and nonlinear molecules self-assembled over silica microstructures. Using this method, we fabricate a spatially periodic coating of nonlinear film over a thin silica fiber taper for second harmonic generation (SHG). Experimentally, we find that the second harmonic signal produced by the taper with periodic nonlinear coating is 15 times stronger than the same taper with uniform nonlinear coating, which suggests that quasi-phase-matching is at least partially achieved in the patterned nonlinear silica taper. The same technique can also be used to spatially pattern other types of functional nanomaterials over silica microstructures with curved surfaces, as demonstrated by deposition of gold nanoparticles in patterned structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.23.008113 | DOI Listing |
RSC Adv
August 2025
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
Cycloaliphatic epoxy resin (CEP) is a promising candidate for rigid housings in high-voltage composite insulators due to its superior hardness, water resistance, and interfacial adhesion compared with conventional high-temperature vulcanized silicone rubber (HTV-SR). However, the long-term insulation degradation mechanisms of CEP under corona discharge are still not fully understood. In this study, CEP, HTV-SR, and glass fiber-reinforced epoxy (GFRP) were subjected to AC corona aging using a multi-needle plate electrode.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Guizhou Institute of Technology, Guiyang, 550025, China.
Karst regions face severe water scarcity due to rapid hydrological leakage and complex geological structures. To address this challenge, this study developed a bioinspired porous condensation material by integrating sand-based substrates with optimized hydrophilic-hydrophobic properties and aluminum fiber modifications. Through orthogonal experiments, the optimal formulation (0.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
BRIC-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, India.
Wound healing is an intricate physiological process, with acute and chronic wounds imposing significant burdens on the healthcare systems worldwide. This study reports the development fully biodegradable silica gel fiber (SGF) scaffolds for enhanced skin tissue regeneration. Three types of wound dressings, differing in their structure, are fabricated: pressure-spun silica gel µ-fibers (pSGF) allowing cell penetration, electrospun sub-µ silica gel fibers (eSGF) mimicking an extracellular matrix (ECM)-like sub-µ-structure with narrow mesh sizes allowing no cell ingrowth, and a hybrid scaffold combining both fiber types (peSGF) that combines the advantages of both structures.
View Article and Find Full Text PDFSensors (Basel)
August 2025
Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica (INO), Via Campi Flegrei, 34-Comprensorio A. Olivetti, 80078 Pozzuoli, Italy.
Whispering-gallery-mode (WGM) microresonators are amongst the most promising optical sensors for detecting bio-chemical targets. A number of laser interrogation methods have been proposed and demonstrated over the last decade, based on scattering and absorption losses or resonance splitting and shift, harnessing the high-quality factor and ultra-small volume of WGMs. Actually, regardless of the sensitivity enhancement, their practical sensing operation may be hampered by the complexity of coupling devices as well as the signalprocessing required to extract the WGM response.
View Article and Find Full Text PDFMaterials (Basel)
August 2025
Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, 45C Wiejska St., 15-351 Bialystok, Poland.
Unmanned maritime vehicles (UMVs) have become essential tools in marine research and monitoring, significantly enhancing operational efficiency and reducing risks and costs. Fiber-reinforced composites have been widely used in marine applications due to their excellent characteristics. However, environmental concerns and the pursuit of sustainable development goals have driven the development of environmentally friendly materials.
View Article and Find Full Text PDF