Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tuberculosis (TB) is an infectious disease caused by mycobacterium, which most commonly affects the lungs. The adaptive immune response in Mycobacterium tuberculosis is predominantly mediated by the interferon-γ (IFN-γ) signaling pathway, which is regulated by IFN-γ receptors (IFNGR). IFN-γ activates the transcription of a number of genes that are important in immune responses, thus the appropriate function of IFNGR appears to be important in host defense against mycobacteria. In the present study, 22 genetic variants in IFNGR1 and IFNGR2 were genotyped in 673 patients and 592 normal controls to investigate the association between IFNGR1 and IFNGR2 polymorphisms and the risk of TB. Statistical analyses revealed that four genetic variants in IFNGR1, rs9376269, rs9376268, rs9376267 and rs56251346 were marginally associated with the risk of TB (P = 0.02-0.04), while other single nucleotide polymorphisms in IFNGR1 and IFNGR2 did not exhibit any associations. However, the significance of the four genetic variants rs9376269, rs9376268, rs9376267 and rs56251346 was eliminated following a multiple testing correction of the data (P>0.05). The present results revealed that certain genetic variants in IFNGR genes may be associated with TB development, which may be useful preliminary data for future investigation.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2015.3544DOI Listing

Publication Analysis

Top Keywords

genetic variants
16
ifngr1 ifngr2
12
variants ifngr1
8
revealed genetic
8
rs9376269 rs9376268
8
rs9376268 rs9376267
8
rs9376267 rs56251346
8
association study
4
study polymorphisms
4
polymorphisms interferon-γ
4

Similar Publications

Recessive TMEM167A variants cause neonatal diabetes, microcephaly and epilepsy syndrome.

J Clin Invest

September 2025

Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.

Understanding the genetic causes of diseases affecting pancreatic β cells and neurons can give insights into pathways essential for both cell types. Microcephaly, epilepsy and diabetes syndrome (MEDS) is a congenital disorder with two known aetiological genes, IER3IP1 and YIPF5. Both genes encode proteins involved in endoplasmic reticulum (ER) to Golgi trafficking.

View Article and Find Full Text PDF

Background: Tachycardia-induced cardiomyopathy (TICM) is typically reversible with rhythm control, but individual susceptibility remains poorly understood and may reflect genetic predisposition.

Case Summary: A 66-year-old woman with paroxysmal atrial fibrillation (AF) presented with new-onset heart failure. Genetic testing identified a likely pathogenic heterozygous ABCC9 gene variant (c.

View Article and Find Full Text PDF

EZH2 variants derived from cryptic splice sites govern distinct epigenetic patterns during embryonic development.

Nucleic Acids Res

September 2025

Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China.

EZH2 catalyzes H3K27me3 and is essential for embryonic development. Although multiple EZH2 variants have been identified, the functional implications and physiological significance of its heterogeneity remain unclear. Here, we revealed that conserved cryptic splice sites generated two EZH2 variants with (EZH2A) or without (EZH2B) a 27-nt region, coding for a 9-aa segment.

View Article and Find Full Text PDF

Moss BRCA2 lacking the canonical DNA-binding domain promotes homologous recombination and binds to DNA.

Nucleic Acids Res

September 2025

Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France.

BRCA2 is crucial for mediating homology-directed DNA repair (HDR) through its binding to single-stranded DNA (ssDNA) and the recombinases RAD51 and DMC1. Most BRCA2 orthologs have a canonical DNA-binding domain (DBD) with the exception of Drosophila melanogaster. It remains unclear whether such a noncanonical BRCA2 variant without DBD possesses a DNA-binding activity.

View Article and Find Full Text PDF

Novel Grm6 Variant in a no b-wave (nob) Mouse Model: Phenotype Characterization and Gene Therapy.

Invest Ophthalmol Vis Sci

September 2025

Department of Ophthalmology, Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, New York, United States.

Purpose: To characterize a no b-wave (nob) mouse model of congenital stationary night blindness (CSNB) caused by a Grm6 variant that disrupts photoreceptor-to-bipolar cell signaling. Additionally, we aim to evaluate the efficacy of gene therapy in restoring visual function.

Methods: The nob mouse was generated through selective breeding to regenerate the nob phenotype.

View Article and Find Full Text PDF