98%
921
2 minutes
20
UVR8 is a recently discovered ultraviolet-B (UV-B) photoreceptor protein identified in plants and algae. In the dark state, UVR8 exists as a homodimer, whereas UV-B irradiation induces UVR8 monomerization and initiation of signaling. Although the biological functions of UVR8 have been studied, the fundamental reaction mechanism and associated kinetics have not yet been fully elucidated. Here, we used the transient grating method to determine the reaction dynamics of UVR8 monomerization based on its diffusion coefficient. We found that the UVR8 photodissociation reaction proceeds in three stages: (i) photoexcitation of cross-dimer tryptophan (Trp) pyramids; (ii) an initial conformational change with a time constant of 50 ms; and (iii) dimer dissociation with a time constant of 200 ms. We identified W285 as the key Trp residue responsible for initiating this photoreaction. Although the C-terminus of UVR8 is essential for biological interactions and signaling via downstream components such as COP1, no obvious differences were detected between the photoreactions of wild-type UVR8 (amino acids 1-440) and a mutant lacking the C-terminus (amino acids 1-383). This similarity indicates that the conformational change associated with stage ii cannot primarily be attributed to this region. A UV-B-driven conformational change with a time constant of 50 ms was also detected in the monomeric mutants of UVR8. Dimer recovery following monomerization, as measured by circular dichroism spectroscopy, was decreased under oxygen-purged conditions, suggesting that redox reactivity is a key factor contributing to the UVR8 oligomeric state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5pp00012b | DOI Listing |
Nucleosides Nucleotides Nucleic Acids
September 2025
School of Basic Medical Sciences, Yan'an University, Yan'an, China.
Live-cell imaging of intracellular proteins enables real-time observation of protein dynamics under near-physiological conditions, providing pivotal insights for both fundamental life science research and medical applications. However, due to limitations such as poor probe permeability and cytotoxicity associated with conventional antibody-based or genetically encoded labeling techniques, live-cell imaging remains a significant challenging. To address these limitations, here in this study, we developed and rigorously validated a novel aptamer-based fluorescent probe for real-time imaging of NEK9 kinase in living cells.
View Article and Find Full Text PDFFASEB Bioadv
September 2025
Kobilka Institute of Innovative Drug Discovery, School of Medicine The Chinese University of Hong Kong Shenzhen Guangdong China.
Formyl peptide receptor 1 (FPR1) is a G protein-coupled receptor (GPCR) that mediates chemotaxis and bactericidal activities in phagocytes. The monoclonal antibody 5F1 is generated against full-length FPR1 and used widely for detection of FPR1 expression. This study aimed to characterize 5F1 for its functions.
View Article and Find Full Text PDFJ Org Chem
September 2025
Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski blvd, Sofia 1756, Bulgaria.
Herein, a novel class of azo photoswitches based on a phthalimide with an azo bond to the imide ring is presented, exhibiting reversible isomerization under a broad range of visible light irradiation from 405 to 530 nm. Structural variations with heteroaryl or aryl segments attached to the 3-phthalylazo unit exhibit distinct spectral features, such as red-shifted absorption, well-separated absorption bands, and tunable stability of the metastable isomer, ranging from seconds to days. They differ drastically in the half-life of -isomer stability, ranging from several seconds (-methylpyrrole) to days (-methylimidazole).
View Article and Find Full Text PDFOrg Biomol Chem
September 2025
Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
Zinc(II) bis(triazolyl)(pyridyl)amine (Zn(BTPA)) complexes on the end of α-amino-iso-butyric acid (Aib) foldamers are able to transfer chirality from bound anions to the helical foldamer body. Zn(BTPA) could be obtained by simple synthetic methodology that allowed a range of functional groups to be installed around the binding site, exemplified with a fluorophore, a macrocyclic bridge and Aib itself. Changing functional group did not prevent chiral ligands from controlling foldamer conformation, although differences in complexation kinetics and equilibria were observed.
View Article and Find Full Text PDFJ Inorg Biochem
September 2025
Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States; Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, MT 59812, United States. Electronic address:
Omega loop C (residues 40-57) of cytochrome c (Cytc) is a common location for naturally-occurring variants of human Cytc that cause thrombocytopenia 4 (THC4). These variants are characterized by significant increases in the intrinsic peroxidase activity of Cytc, which appears to be linked to increased dynamics in Ω-loop D (residues 71-85). The mutations in Ω-loop C enhance the dynamics of Ω-loop D by decreasing the acid dissociation constant of the trigger group (pK) of the alkaline conformational transition.
View Article and Find Full Text PDF