Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Patients with chronic pain usually suffer from cognitive impairment, with memory deterioration being the most common deficit that affects daily functioning and quality of life. The causes for this impairment are not clear despite intensive clinical studies. Few studies have evaluated impaired learning using animal models of persistent pain.

Objective: In this study, a new trigeminal neuralgia model induced by cobra venom was adopted to explore effects of chronic pain on spatial learning and memory in rats.

Study Design: Controlled animal study.

Setting: Department of Anesthesiology, Pain Medicine & Critical Care Medicine, Aviation General Hospital of China Medical University.

Methods: Thirty adult male Sprague-Dawley rats were randomly divided into 2 groups (n = 15): NS control group and cobra venom group, 0.9% sterile saline or cobra venom solution was injected into the sheath of the infraorbital nerve (ION), respectively. The development of trigeminal neuralgia was accessed by changes in free behavioral activity 3 days before the surgery and 3, 7, 12, 20, and 30 days after the surgery to identify whether the model was successful or not. Morris water maze test determined the abilities of spatial learning and memory at the time points before the surgery, and 2 weeks and 5 weeks after the surgery. We also observed the ultrastructure of the ION and medulla oblongata of rats following 8 weeks of chronic trigeminal neuropathic pain.

Results: Rats with the cobra venom injection displayed significantly more face grooming and fewer exploratory activities compared to the NS control group or baseline (P < 0.01). Both groups improved their latency to reach the platform with the largest difference on the first day (P < 0.01), but without memory deficits in a probe trial for the second water maze protocol. For the third water maze testing, the rats in the cobra venom group experienced decreased abilities of spatial learning and memory, a longer latency with spatial memory deficits during the probe trial (P < 0.05). At the ultrastructural level, we found changes in the medulla oblongata after cobra venom injection resulting in severe demyelination and loss of axons that might be implicated in the causes of cognitive deficits.

Limitations: Limitations include partial vision loss in the eye on the lesion side of the rats that might be missed and the absence of evaluating the ultrastructural changes in other parts of the brain.

Conclusions: The results of this study suggest that trigeminal neuralgia induced by cobra venom in adult rats can impair spatial learning and memory function over time and results in demonstrable changes in the ultrastructure of the medulla oblongata. This new animal model may be useful for future studies on the effect of chronic pain on learning and cognition.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cobra venom
32
spatial learning
20
learning memory
20
trigeminal neuralgia
16
induced cobra
12
abilities spatial
12
chronic pain
12
water maze
12
medulla oblongata
12
neuralgia induced
8

Similar Publications

Snake envenomation is a neglected tropical disease with two million snake bites reported each year (WHO). Much less common is snake venom ophthalmia secondary to eye exposure from spitting snakes. This paper reports an unusual case of systemic envenomation via the ocular route of a 14-year old male from the Philippines.

View Article and Find Full Text PDF

Australian elapid snakes possess potent procoagulant venoms, capable of inducing severe venom-induced consumption coagulopathy (VICC) in snakebite victims through rapid activation of the coagulation cascade by converting the FVII and prothrombin zymogens into their active forms. These venoms fall into two mechanistic categories: FXa-only venoms, which hijack host factor Va, and FXa:FVa venoms, containing a complete venom-derived prothrombinase complex. While previous studies have largely focused on human plasma, the ecological and evolutionary drivers behind prey-selective venom efficacy remain understudied.

View Article and Find Full Text PDF

Differences in venom within snake species can affect the efficacy of antivenom, but how this variation manifests across broad geographical scales remains poorly understood. envenoming causes severe morbidity in China, yet whether intraspecific venom variation exists across mainland regions is unknown. We collected venom samples from seven biogeographical regions (spanning > 2000 km latitude).

View Article and Find Full Text PDF

Venoms of the Palearctic vipers in the genus cause severe procoagulant clinical effects, yet the precise molecular targets remain incompletely defined. To fill this toxicological knowledge gap, we tested five venoms-, , (Turkmenistan and Uzbekistan localities), and -using plasma clotting assays, Factors VII, X, XI, and XII and prothrombin zymogen activation assays, and SDS-PAGE to visualise Factor V (FV) cleavage. All venoms induced extremely rapid clot formation (10.

View Article and Find Full Text PDF

, commonly known as the death adder, is a venomous Australian snake and a member of the Elapidae family. Due to its robust body and triangular head, it was historically misclassified as a viper. Its venom is known for neurotoxic, hemorrhagic, and hemolytic effects but displays low anticoagulant activity.

View Article and Find Full Text PDF